
www.infineon.com

Please note that Cypress is an Infineon Technologies Company.
The document following this cover page is marked as “Cypress” document as this is the
company that originally developed the product. Please note that Infineon will continue
to offer the product to new and existing customers as part of the Infineon product
portfolio.

Continuity of document content
The fact that Infineon offers the following product as part of the Infineon product
portfolio does not lead to any changes to this document. Future revisions will occur
when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers
Infineon continues to support existing part numbers. Please continue to use the
ordering part numbers listed in the datasheet for ordering.

www.cypress.com Document No. 001-84858 Rev.*M 1

AN84858
PSoC 4 Programming Using an External Microcontroller (HSSP)

Author: Tushar Rastogi
Associated Part Family: PSoC 4

Related Application Notes: AN73054, AN44168
To get the latest version of this application note, or the associated project file, please

visit http://www.cypress.com/go/AN84858.

More code examples? We heard you.
To access an ever-growing list of hundreds of PSoC code examples, please visit our code

examples web page. You can also explore the PSoC video library here.

AN84858 shows you how to implement PSoC® 4 device programming with an external microcontroller by using modular
C code. In this process, called Host Sourced Serial Programming (HSSP), the host microcontroller programs PSoC 4
through the serial wire debug (SWD) interface. The C code is written so that it can be ported to any microcontroller with
minimal changes, speeding up HSSP application development for PSoC 4.

Contents
1 Introduction .. 2

1.1 Types of Programmers 2
1.2 Terms and Definitions ... 2

2 HSSP Firmware Architecture 3
2.1 SWD Protocol Physical Layer 4
2.2 SWD Protocol Packet Layer 4
2.3 Fetching Programming Data 4
2.4 HSSP Programming Steps 4
2.5 HSSP Timeout Parameters 5
2.6 HSSP Programming Data 5
2.7 Main Application Code .. 6
2.8 HSSP Error Status .. 6

3 Hardware Connections for HSSP Programming 7
4 Porting the HSSP Application to a

Host Programmer .. 8
4.1 Files That Must Be Ported................................... 8
4.2 Code Changes Required While Porting 8

5 Calculating HSSP Timeout Parameters 9
5.1 DEVICE_ACQUIRE_TIMEOUT 9
5.2 SROM_POLLING_TIMEOUT 10
5.3 XRES_PULSE_100US 11

6 Interface for Receiving HSSP Programming Data 11
7 HSSP Timing Validation .. 12
8 Power Cycle Mode Programming 12
9 Testing the Example Projects 13

9.1 For CY8CKIT-038 PSoC 4 Development Kit 13

9.2 For Kits with Onboard PSoC 5LP
Programmer (KitProg) 13

9.3 For Kits with Onboard PSoC 5LP
Programmer (KitProg2) 17

10 Tips and Tricks for Debugging HSSP Issues 20
11 Summary ... 21
12 Related Documentation ... 21

12.1 Application Notes .. 21
12.2 Programming Specifications 21
12.3 Architecture Technical Reference Manuals 21
12.4 Web Page ... 21

13 List of Attached Projects .. 21
Appendix A. Hex File Parser Application 23

A.1 Using the Hex File Parser Application............... 23
A.2 Adding the Generated Files to

PSoC Creator Example Project 24
Appendix B. Status Codes for SROM Request 26
Appendix C. Bit Field Definitions of HSSP

Error Status Register ... 27
C.1 Bits[2:0] – SWD Acknowledge

Response (SWD ACK [2:0]) 27
C.2 Bit 3 – SWD Read Data Parity Error 27
C.3 Bit 4 – Port Acquire Timeout 27
C.4 Bit 5 – SROM Polling Timeout Error 27
C.5 Bit 6 – Verification Failure 28
C.6 Bit 7 – Transition Error 28

Appendix D. HSSP Functions 29

http://www.cypress.com/
http://www.cypress.com/products/32-bit-arm-cortex-m0-psoc-4
http://www.cypress.com/documentation/application-notes/an73054-psoc-3-and-psoc-5lp-programming-using-external
http://www.cypress.com/documentation/application-notes/an44168-psoc-1-device-programming-using-external-microcontroller
http://www.cypress.com/go/AN84858
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/search/all?f%5b0%5d=meta_type%3Asoftware_tools&f%5b1%5d=software_tools_meta_type%3A579&f%5b2%5d=field_related_products%3A88886
http://www.cypress.com/video-library/PSoC

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 2

1 Introduction
PSoC 4 device programming refers specifically to the programming of the nonvolatile memory in PSoC 4 by using an
external host programmer. The host can be the programmer supplied by Cypress (CY8CKIT-002 MiniProg3), a third-
party programmer, or a custom programmer (for example, an onboard microcontroller). This application note explains
how to implement a host programmer to program a PSoC 4 device. For more information on the PSoC 4 architecture
and to learn how to create projects for PSoC 4 using the PSoC Creator™ software, see AN79953 – Getting Started
with PSoC® 4.

1.1 Types of Programmers
The type of device programmer you choose depends on the stage of product development:

Prototyping: A programmer must be able to perform the following functions:

Program the device.
Debug the device to troubleshoot the application.
The programmers used during prototyping must also interact with the integrated design environment (IDE)—for
example, PSoC Creator™—to accomplish the programming and debugging operations. A few examples are
Cypress’MiniProg3 or the PSoC® 5LP Prototyping Kit, which can be used as a low-cost programmer/debugger.

Production: You require a programmer that can program multiple devices. It parses the hex file to extract the necessary
information and implements programming through the programming interface, such as SWD.

There are two major categories of programmers:

 In-system programmers can program the target device directly on the end-application PCB. You can connect the
external programmer to the device’s programming pins to do in-system programming.

 Socket programmers require the target device to be placed on the programmer hardware socket for programming.
After programming, solder the target device to the end-application PCB. Most third-party production programmers
are of the socket type.

In both in-system and socket programming, the programmer implements an HSSP algorithm and generates signals to
program the hex file’s data.

This application note provides the C code to implement an HSSP programmer. You can easily port this C code to any
host microcontroller with minimal changes. By porting, you reduce the time required to develop HSSP applications for
PSoC 4 devices. The project provided with this application note uses a PSoC 5LP device as a host programmer to
program the target device.

Before reading this application note, review the programming specifications document of the respective device listed in
the Related Documentation section. This document explains the programming interface, programming algorithm,
hardware connection, and electrical timing specifications required to program PSoC 4 devices. This application note is
a practical implementation of the programming specifications.

1.2 Terms and Definitions
1. Serial wire debug (SWD): Developed by ARM, the SWD protocol uses only two wires—SWDCLK (clock) and

SWDIO (bidirectional data line)—to program and debug.
2. Debug access port (DAP): DAP is the program/debug interface between SWD and the CPU in PSoC 4 It includes

a debug port (DP) and an access port (AP).
 DP is responsible for the physical connection to the programmer/debugger.
 AP provides the interface between the DAP module and the Cortex-M0 CPU, the flash memory, and so on.

3. HSSP: HSSP refers to the programming of the target device on the board using a host microcontroller. The target
is programmed through the SWD interface. In this application note, HSSP uses a bit-banging implementation to
program the target device. Bit-banging programming refers to the technique in which programming pins are
manipulated using a software code that resides in the host programmer.

4. Differences between bootloading and HSSP: In embedded systems, bootloaders are also used to update the
system firmware. Bootloading and HSSP differ in the following key aspects:
 Bootloaders are used to update the flash memory of the device over a standard communication protocol.

Bootloaders can update only a specific portion of the flash memory, known as the bootloadable area.

http://www.cypress.com/
http://www.cypress.com/?rID=38154&source=an84858
http://www.cypress.com/?rID=78695
http://www.cypress.com/?rID=78695
http://www.cypress.com/?id=2494&source=an84858
http://www.cypress.com/?rID=38154&source=an84858
http://www.cypress.com/?rid=108038
http://www.cypress.com/?rID=2543

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 3

 On the other hand, HSSP supports complete programming of the flash memory in the target device.
 Bootloaders can use any standard communication interface (such as, USB, I2C, SPI, and UART) to update

the firmware, while HSSP uses an SWD or JTAG interface to program the flash. PSoC 4 supports only SWD
interfaces.

2 HSSP Firmware Architecture
HSSP for the target device is implemented in multiple layers using modular C code. These layers are as follows:

1. SWD Protocol Physical layer

2. SWD Protocol Packet layer

3. HSSP Programming Steps layer
See Figure 1 for the flow of control among these layers.

See the A_Hssp_Programmer project, which uses PSoC 5LP as the external host programmer, attached with this
application note for the implementation of this firmware.

Figure 1. HSSP Firmware Architecture

The HSSP Programming Steps layer uses the “Fetching Programming Data” interface to extract the programming data
from the source of the data (for example, the hex file data provided by any communication interface—I2C, SPI, UART,
or USB or host flash—as Figure 1 shows. In addition, the “HSSP Programming Step” layer uses the HSSP Timeout
Parameters interface to configure timeouts in its programming APIs.

All layers used in the firmware architecture, as shown in Figure 1, are discussed in the following sections.

Host Programmer

SWDIO

SWDCK

XRES(1)

Target PSoC 4
device

RegisterDefines.h,
SWD_PhysicalLayer.h,
SWD_PhysicalLayer.c

SWD Protocol Physical Layer

SWD_PacketLayer.h,
SwdPacketLayer.c

SWD_UpperPacketLayer.h,
Swd_UpperPacketLayer.c

SWD Protocol Packet Layer

Timeout.h,
Timeout.c

HSSP Timeout
Parameters

ProgrammingSteps.h,
ProgrammingSteps.c

HSSP Programming Steps

DataFetch.h,
DataFetch.c

 Fetching Programming
Data

 HexImage.h,
HexImage.c

 Programming
Data

main.c

Main application code
Device Acquire

Verify Silicon ID

Erase all Flash

Checksum Privileged Calculation

Program Flash

Exit HSSP Programming mode

Verify Flash

Program Protection Settings

Verify Protection Settings

Verify Checksum

HSSP Implementation Flow

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

(1)For power cycle mode programming, device power rails need to be
 toggled instead of the reset (XRES) pin

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 4

2.1 SWD Protocol Physical Layer
Files that constitute the SWD Protocol Physical layer are described in Table 1.

Table 1. SWD Protocol Physical Layer Files

Source Files Description

RegisterDefines
(.h file)

This file defines the port number, pin number, input/output register, and drive mode register of the
programming pins.

SWD_PhysicalLayer
(.c and .h files)

These files contain macros and functions to manipulate the programming pins. The pins are defined in
the RegisterDefines.h file.

The codes in these files are written for PSoC 5LP as the host microcontroller. If these files are ported to any other host
microcontroller, then you should modify all the functions and macros appropriately.

Note: See “Pin Names and Requirements” in the programming specifications of the respective device listed in the
Related Documentation section for details on the pin configurations on the host side.

2.2 SWD Protocol Packet Layer
Files that constitute the SWD Protocol Packet layer are described in Table 2.

Table 2. SWD Protocol Packet Layer Files

Source Files Description

SWD_PacketLayer
(.c and .h files)

These files define the packet routines for sending the SWD Read and
SWD Write packets per the SWD protocol.

SWD_UpperPacketLayer
(.c and .h files)

These files use the functions defined in SWD_PacketLayer to implement
functions that directly read and write to the DAP register and CPU address
space.

The functions defined in this layer are called directly by the functions in the ProgrammingSteps.c file.

All of these SWD packet functions operate on three global variables—swd_PacketHeader, swd_PacketAck, and
swd_PacketData[]—that are accessed by the functions in the top layer files, as Figure 1 shows.

2.3 Fetching Programming Data
Files used for fetching the programming data to the upper layer functions are described in Table 3.

Table 3. Data Fetch Layer File

Source File Description

DataFetch
(.c and .h files)

These files contain the routines to fetch the programming data from the HexImage.c file and then pass
that data to the functions in the ProgrammingSteps.c file.

The programming data includes flash row data, flash protection data, chip protection data, Silicon ID,
checksum, and the total number of flash rows.

Modify the definitions of the functions based on the method that you use to get the HSSP programming data.

Note: See the section “Interface for Receiving HSSP Programming Data” for information on how to modify the HSSP
source code.

2.4 HSSP Programming Steps
This layer includes the files named ProgrammingSteps.c and ProgrammingSteps.h. These files contain the top-level
functions of the HSSP application. These functions are described in sequence as follows:

1. Device Acquire: In this step, the device is acquired by sending a specific sequence through the SWD interface
after a device reset. As a result, the host programmer can control the Cortex-M0 CPU and other system resources,
such as SRAM and registers. The PSoC 40xx, PSoC 4xx7_BLE, PSoC 40xxS PSoC 41xxS and PSoC 4100PS
family of devices requires the internal main oscillator (IMO) frequency to be set at 48 MHz before flash erase/write
operations. This operation is also included in the Device Acquire routine for these devices.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 5

Note: Some of the devices in the PSoC 4000 family do not have a dedicated reset (XRES) pin, and have to be
reset by toggling the device power rails. This is referred to as Power Cycle Mode programming. Refer to the Power
Cycle Mode Programming section for details on the changes required for modifying the code to support power
cycle mode programming.

2. Verify Silicon ID: This step verifies that the acquired device is the same as the one for which the hex file was
generated.

3. Erase All Flash: This step erases all user rows and corresponding flash protection.
4. Checksum Privileged Calculation: After all the user rows are erased, this step calculates the checksum of the

privileged rows, which is used to verify the checksum of the user rows in Step 9.
5. Program Flash: In this step, flash is programmed using the programming data in the hex file and SROM API calls.
6. Verify Flash: This step is used to verify the flash data programmed in the previous step with the data in the hex

file. This step is optional but highly recommended.
7. Program Protection Settings: In this step, row protection settings and chip protection settings from the hex file

are written to the specific flash area.
8. Verify Protection Settings: Both protection settings are matched with the settings in the hex file.
9. Verify Checksum: This step matches the checksum of the user data in the flash with the checksum in the hex file.

It uses the checksum of the privileged rows calculated in step 4.
10. Exit HSSP Programming Mode: This step releases the target device from programming mode.
Each of these steps is described by functions made up of basic SWD instructions. See the programming specifications
document of the respective device listed in the Related Documentation section for detailed information.

The functions declared in the ProgrammingSteps.h file access the functions, definitions, and global variables from three
layers: SWD Protocol Packet layer, DataFetch layer, and Timeout layer. The functions provided in the
ProgrammingSteps.c and ProgrammingSteps.h files cover all the steps required to program the target device.

2.5 HSSP Timeout Parameters
Table 4. Timeout Layer Files

Source File Description

Timeout (.c and .h files) These files contain the timestamp definitions and the delay routines used in HSSP.

Timestamp definitions are derived from the electrical timing specifications provided in the Device Programming
Specifications. The values of these timestamp parameter definitions in Timeout.h are for a PSoC 5LP host programmer
running at a clock frequency of 63 MHz.

Timestamp definitions and the delay routine are used in the function definitions in the ProgrammingSteps.c file.

To learn how to calculate the timestamp parameters for a specific host programmer, see the section Calculating HSSP
Timeout Parameters.

2.6 HSSP Programming Data
Files that contain the programming data to be stored in the host programmer are described in Table 5.

Table 5. Files Containing the Programming Data

Source Files Description
HexImage
(.c and .h files)

These files contain the data to be programmed into the target device.

They also store the target device parameters used in HSSP programming, such as silicon ID, checksum,
total number of flash rows, and number of bytes per flash row.

The data in these files is stored in PSoC 5LP flash memory as an array of constants.

These files are generated by the C# application Hex File Parser, which is provided with this application note. This
application generates these files by taking the target device hex file as the input. The details of this application are
provided in Appendix A.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 6

For details on the hex file format, see “Appendix B. Intel Hex File Format” in the programming specifications document
of the respective device listed in the Related Documentation section of this document.

For host programmers that lack the memory capacity to store the programming data in the on-chip memory, the
HexImage.c and HexImage.h files are not required. In such cases, the HSSP programming data is typically sent to the
host as packets through a communication interface, such as I2C, UART, or USB.

Note: See the section Interface for Receiving HSSP Programming Data for information on modifying the HSSP source
code according to the method used to get the programming data.

2.7 Main Application Code
The main.c file is the main application code that calls the top-level HSSP programming steps in the sequence shown
in Figure 1. The function ProgramDevice() in main.c executes all the steps. Each step must be executed successfully
before you can proceed to the next step.

The HSSP operation is aborted if a FAILURE is returned after any step. The error status returned by the
ReadHsspErrorStatus()function is used to identify the cause of the error. The status of the HSSP operation, along
with the error status register, is displayed on a character LCD in the attached HSSP project.

Note: The character LCD and Pin_Start routines are specific to the PSoC 5LP host programmer and, therefore,
should be modified as required for any other host programmer.

2.8 HSSP Error Status
When any of the top-level steps in the HSSP application returns a failure status, the ReadHsspErrorStatus()
function is called from the main application code to get the details of the error.

This function returns the status byte. Use the status byte to infer error details from the bit field definitions.
See Figure 2 for the bit fields returned by this function.

Figure 2. HSSP Error Status Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SWD ACK [2:0] response

SWD Read Data
Parity Error

SROM Polling Timeout

Port Acquire Timeout

Transition Error

Verification Failure

Table 6 describes the bit field definitions of this status register.

Table 6. HSSP Error Status Register

Bit Field Name Description
[2:0] SWD ACK These three bits store the acknowledge response of previous SWD transactions.

3 SWD Read Data Parity Error If this bit is set, it indicates a parity error in the data received by the host.

4 Port Acquire Timeout If this bit is set, it indicates that the device was not acquired within the timeout window.

5 SROM Polling Timeout If this bit is set, It indicates that SROM operations exceed 1 second.

6 Verification Failure This bit is set in multiple steps. Depending upon the step where failure occurred, the
reason can be inferred.

7. Transition Error If this bit is set, it indicates that the chip protection settings read from the chip and the
hex file indicates a wrong transition.

To learn more about this register and for a detailed explanation of the bit fields, see Bit Field Definitions of HSSP Error
Status Register.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 7

3 Hardware Connections for HSSP Programming
HSSP programming in PSoC 4 uses the SWD interface pins (SWDIO and SWDCK) and the external reset pin (XRES).
The host programmer pin drive mode requirements are explained in the “Physical Layer” section in the programming
specifications document listed in the Related Documentation section of this document. Figure 3 shows the basic
hardware connection required between the host programmer and the target device.

Figure 3. Basic Host/Target Connections

Host
Programmer

PSoC 40xx

VDD VDDD

SWDCK

XRES

SWDIO

GND

SWDCK (P3[1]])

XRES(1)

SWDIO (P3[0])

GND

VSSD

8 5 5

0.1 uF

Host
Programmer

PSoC 4xxx/
PSoC 4xxxM/

PSoC 4xxxL/PSoC 40xxS/PSoC
41xxS/ PSoC 4100PS/ PSoC

4100S Plus
VDD VDDD

SWDCK

XRES

SWDIO

GND

SWDCK (P3[3]])

XRES

SWDIO (P3[2])

VDD

GND

VSSD

1.8 V – 5.5 V

0.1 uF

Host
Programmer

PSoC 4xx7_BLE/
 PSoC 4xx8_BLE

VDD VDDD

SWDCK

XRES

SWDIO

GND

SWDCK (P0[7])

XRES

SWDIO (P0[6])

VDD

GND

VSSD

1.8 V – 5.5 V

0.1 uF

(1) Toggle VDDD pin for devices
 that do not have an XRES pin

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 8

4 Porting the HSSP Application to a Host Programmer

The project A_Hssp_Programmer, provided with this application note, uses PSoC 5LP as the host programmer for the
target device. In the HSSP application, the host programmer can be any other microcontroller. This section explains
the changes required to port the HSSP application code to the specific host used to program the target device.

4.1 Files That Must Be Ported
The PSoC 5LP host programmer-based project includes files specific to PSoC 5LP. While porting the HSSP application
code to any other host programmer, you must port only the files listed in Table 7.

Table 7. Files That Must Be Ported

Header Files to Be Ported Source Files to Be Ported

SWD_PhysicalLayer.h SWD_PhysicalLayer.c

SWD_PacketLayer.h SWD_PacketLayer.c

SWD_UpperPacketLayer.h SWD_UpperPacketLayer.c

Timeout.h Timeout.c

HexImage.h HexImage.c

DataFetch.h DataFetch.c

ProgrammingSteps.h ProgrammingSteps.c

RegisterDefines.h

4.2 Code Changes Required While Porting
Make the following changes to each of the files while porting the attached HSSP application code to any host
programmer other than PSoC 5LP. Note that only some files need to be modified while porting.

1. RegisterDefines.h: Modify the definitions in this header file for the port numbers, pin numbers, mask values, output
registers, input registers, and drive mode registers according to the host programmer used.

2. SWD_PhysicalLayer.h: All the bit-banging macros defined in this header file are used in the function definitions
in the SWD_PhysicalLayer.c file. Modify these macros according to the host programmer used.

3. SWD_PhysicalLayer.c: Modify all the bit-banging functions defined in this file according to the host programmer
used.

4. Timeout.h: Modify the three timeout parameter definitions described in Table 8 according to the host programmer
used.

Table 8. Timing Parameters

S.No. Timing Parameter

1 XRES_PULSE_100US

2 DEVICE_ACQUIRE_TIMEOUT

3 SROM_POLLING_TIMEOUT

To learn how to calculate the timeout parameters for a specific host programmer, see Calculating HSSP Timeout
Parameters.

5. HexImage.c, HexImage.h: These files contain the data to be programmed into the target device, defined as an
array of constants. For the PSoC 5LP host programmer, the data to be programmed is stored in the flash memory
of the host PSoC 5LP.
Some host programmers may lack the capacity to store the programming data in their on-chip memory. Instead,
they can use a communication interface, such as USB, SPI, or UART, to get the programming data. In such a case,
remove these files.

6. DataFetch.c: The definitions for the functions should be modified based on the method used to get the
programming data.
See Interface for Receiving HSSP Programming Data for information on modifying the HSSP source code
according to the method used to get the programming data.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 9

7. main.c: The APIs for the character LCD and Pin_Start pin in the main.c file are specific to a PSoC 5LP host
programmer. Therefore, you should either remove them or modify them while porting to any other host programmer.

In the above specified files, the following comments precede the code that needs to be modified based on the host
programmer. This helps you identify the code to be modified.

/******USER ATTENTION REQUIRED******/

/******HOST PROCESSOR SPECIFIC******/

5 Calculating HSSP Timeout Parameters
Modify the values of the timeout parameters defined in the Timeout.h file according to the host programmer used.

A separate test project, “C_Hssp_TimeoutCalc,” is provided with the application note. This project illustrates the
procedure to calculate the timeout parameters for a PSoC 5LP host programmer. Create a similar test project for any
other host programmer to calculate those timeout values.

The test project provides test functions in two files: TimeoutCalc.h andTimeoutCalc.c. These test functions toggle a test
pin during code execution. The timeout parameters are measured by measuring the LOW pulse width of the signal on
the test pin using an oscilloscope.

To calculate these timeout parameters, see the explanation in the macro definitions in the TimeoutCalc.h header file of
the project. Now look at the significance of each of these timeout values:

5.1 DEVICE_ACQUIRE_TIMEOUT
This macro is used in the function DeviceAcquire()in the ProgrammingSteps.c file. To program the device, the
device must be acquired within the maximum time window for acquiring the device after you do a device reset using
the XRES pin. Maximum time window for acquiring the device is defined in Table 9.

Table 9. Timeout for Acquiring Device

Device Family Timeout (ms)1

PSoC40xx 2.0

PSoC41/42xx 1.5

PSoC4xxxM 2.0

PSoC 4xxxL 2.0

PSoC4xx7_BLE / PSoC4xx8_BLE 2.0

PSoC 4000S/ PSoC 4100S/ PSoC 4100PS 2.0

PSoC 4100S Plus 5.0

Note: The recommended minimum frequency of the SWDCK clock, which meets the timing requirement to acquire the
device, is 1.5 MHz. See the “Step 1. Acquire Chip” subsection of the programming specifications document of the
respective device listed in the Related Documentation section for more details.

The device-acquiring sequence consists of two steps:

Do a line Reset, which is a standard ARM command to reset the debug access port (DAP).
Read the DAP.
DEVICE_ACQUIRE_TIMEOUT indicates the maximum number of times a host can send the device-acquiring
sequence in a specific time window after device reset as given in Table 9.

To calculate this macro, uncomment the TestModeTimeout() function in the main.c file of the project, and then
program the device.

1 The timeout for acquiring the device in the case of Power Cycle mode programming must be longer, ~ 30 ms.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 10

Measure the LOW pulse width on the test pin for one iteration of the device-acquiring sequence by using an
oscilloscope. Then, calculate this macro as follows:

DEVICE_ACQUIRE_TIMEOUT = (X ms/low pulse width), where X is the maximum time window for acquiring the device
as defined in Table 9.

Code 1. Calculating DEVICE_ACQUIRE_TIMEOUT Parameter

Unsignedshort timestamp = 0;
Unsignedlongchip_DAP_Id = 0;

/* Make the pin LOW before sending SWD clock train */
TESTPIN_OUTPUT_LOW;

for(timestamp = 0; timestamp < 1; timestamp++)
{
 Swd_LineReset();
 Read_DAP(DPACC_DP_IDCODE_READ, &chip_DAP_Id);
}
/* Make the pin HIGH after sending SWD clock train */
TESTPIN_OUTPUT_HIGH;

5.2 SROM_POLLING_TIMEOUT
This macro is used in the SROM polling operations during HSSP programming. It is used while polling the result of the
nonvolatile memory read and write operations through SROM requests in the target device.

When the host requests a SROM system call through the SWD interface, it waits a maximum of one second while
reading the CPUSS_SYSREQ register for status. If a response is not received, the host aborts the HSSP operation.

SROM_POLLING_TIMEOUT indicates the maximum number of times the CPUSS_SYSREQ register can be read in a
time window of one second.

To calculate this macro, uncomment the TestSromPollingTimeout() function in the main.c file of the project, and
then program the device.

Measure the LOW pulse width on the test pin after sending 10 iterations of the SROM polling sequence by using an
oscilloscope. Then calculate the macro as follows:

SROM_POLLING_TIMEOUT = (1 s/LOW pulse width)*10

Code 2. Calculating the SROM_POLLING_TIMEOUT Parameter

Unsignedshort timestamp = 0;
UnsignedlongstatusCode = 0;

/* Make the pin low before sending SWD clock train */
TESTPIN_OUTPUT_LOW;

for(timestamp = 0; timestamp < 10; timestamp++)
{
 Read_IO (CPUSS_SYSREQ, &statusCode);

/*performing SROM_SYSREQ_BIT | SROM_PRIVILEGED_BIT */
statusCode &= (SROM_SYSREQ_BIT | SROM_PRIVILEGED_BIT);

}
/* Make the pin high after sending SWD clock train */

TESTPIN_OUTPUT_HIGH;

This macro signifies the number of times CPUSS_SYSREQ can be read and checked if SROM_SYSREQ_BIT and
SROM_PRIVILEGED_BIT are set to 0 in a 1-second interval.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 11

5.3 XRES_PULSE_100US
To reset the target device, the host generates an active LOW signal with a minimum pulse width of 5 µs on the XRES
line. In the HSSP code, a pulse width of 100 µs is generated on the XRES pin.

The function TestDelayHundredUs() is defined in the TimeoutCalc.c file.

In the C_Hssp_TimeoutCalc project provided with the application note, this function is implemented using the
CyDelayUs() API. Uncomment the line in TimeoutCalc.h to implement this function using microcontrollers other than
PSoC as host programmer.

#define XRES_PULSE_100US 600

Modify the code in TestDelayHundredUs() defined in the TimeoutCalc.c as given in code 3.

To calculate this macro, uncomment the TestDelayHundredUs() function in the main.c file of the project, and then
program the device. Measure the pulse width of the test pin on an oscilloscope.

Code 3. Delay Routine

unsignedshort timestamp;

/* Make the pin low before start of the delay */
TESTPIN_OUTPUT_LOW;

/* For loop to introduce the 100 us delay
for(timestamp = 0; timestamp < XRES_PULSE_100US; timestamp++)
{
 /* Do Nothing */
}

/* Make the pin high after end of the delay */
TESTPIN_OUTPUT_HIGH;

The A_HSSP_Programmer and B_HSSP_Pioneer projects implement a 100-µs delay using the CyDelayUs () API. For
microcontrollers other than PSoC as the host programmer, the XRES_PULSE_100US parameter has to be defined in
Timeout.h and the delay should be implemented using this parameter in the DelayHundredUs function of Timeout.c.

For power cycle mode programming, this delay routine signifies the time for which the device power rails are OFF. For
power cycle mode programming, there are no requirements for this pulse width. The recommendation is to have a 1-
ms delay before turning ON the power rails.

6 Interface for Receiving HSSP Programming Data
The files DataFetch.c and DataFetch.h contain the functions to fetch the data to be programmed into the target device.

In the example project, the programming data is stored in the on-chip flash memory of the PSoC 5LP host programmer
in the files HexImage.c and HexImage.h. The data fetch routines access this data from the PSoC 5LP flash memory to
perform HSSP.

However, not all host programmers may have the on-chip memory to store the HSSP programming data. When that is
the case, the programmer can use a communication interface (such as SPI, USB, or UART) to get the programming
data. Also, all the function definitions in the DataFetch.c file should be modified appropriately.

The following example is a reference that shows the modifications required for the Hex_ReadRowData() function.
You can perform similar modifications for other functions as well.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 12

Original Code

Code 4. Original Code to Get Flash Data

void HEX_ReadRowData(unsignedshortrowCount, unsignedchar * rowData)
{
/* Maximum value of 'i' can be 256 */
unsignedshort i;

for(i = 0; i<BYTES_PER_FLASH_ROW; i++)
 {

rowData[i] = FlashData_HexFile[rowCount][i];
 }
}

Modified Code

If the programming data is received through a communication interface, then the modified code should be similar to the
following one.

Code 5. Modified Code to Get Flash Data

void HEX_ReadRowData(unsignedshortrowCount, unsignedchar * rowData)
{
/* Maximum value of 'i' can be 256 */
unsignedshort i;

/* ADD WAITING CODE HERE FOR THE UART BUFFER TO GET THE FLASH DATA */

for(i = 0; i<BYTES_PER_FLASH_ROW; i++)
 {

rowData[i] = /* PLACE THE UART BUFFER ARRAY HERE */
 }
}

7 HSSP Timing Validation
The host programmer must meet the timing specifications for the target device programming to achieve a robust HSSP
implementation. Those specifications are given in “Appendix D. Timing Specifications of the SWD Interface” of the
programming specifications document of the respective device listed in the Related Documentation section.

The host programmer must meet the timing parameters specified for the SWD interface and programming mode entry.
To validate the timing, capture the SWDIO, SWDCK, and XRES signals on an oscilloscope. For power cycle mode
programming, the device power rails should be monitored instead of the XRES pin. Using the captured waveforms, you
can verify the timing parameters against the corresponding values provided in the programming specification.

8 Power Cycle Mode Programming
Device programming starts with a device reset to acquire the device and enter programming mode. The recommended
method of resetting the device from the host side is to toggle the device XRES pin. But some lower pin count devices
in the PSoC 4000 family do not have an XRES pin, and the host has to toggle the device Vdd pin to reset the device
(power cycle mode). All the projects provided with the application note work using the XRES programming mode
because the PSoC 5LP host processor on the development kit does not have the hardware connections to toggle the
power supply of the target PSoC 4 device. So, when porting the projects to your host processor and adding power cycle
mode support, the following changes and considerations need to be made in the project.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 13

1. The DEVICE_ACQUIRE_TIMEOUT value, discussed in the section DEVICE_ACQUIRE_TIMEOUT, has to be
modified to reflect the much longer 30-ms timeout window required for power cycle mode programming. So, for
example, if the DEVICE_ACQUIRE_TIMEOUT define has been calculated to be 20 for a 2 ms XRES mode acquire
timing, then that define should be changed to 300 for a 30 ms power cycle mode acquire timing.

2. The function definitions related to toggling of the XRES pin on the host side should be modified as appropriate to
toggle the device power rails. These functions are - SetXresHigh(),SetXresLow().

3. If an I/O pin of the host processor is used to power the PSoC 4 device directly to toggle the power from the host
side, ensure that the I/O pin can source the current required for device operation as specified in the respective
PSoC 4 device datasheet. If the I/O pin is not able to source the required current, the output voltage (VOH) typically
decreases, and can potentially go even below the minimum PSoC 4 device operating voltage. This can cause
programming failures. Such a voltage droop scenario can be identified by observing the power rail voltages on the
oscilloscope.

9 Testing the Example Projects
The project file HexImage.h defines parameters CY8C40xx_FAMILY, CY8C4xxxM_FAMILY, CY8C4xx7_BL_FAMILY,
CY8C4xx8_BL_FAMILY, CY8C4xxxL_FAMILY, CY8C40xxS_FAMILY, CY8C41xxS_FAMILY,
CY8C41xxS_PLUS_FAMILY, and CY8C41xxPS_FAMILY. These parameters are automatically set to 1 if the hex file
parser application for the respective family is used to generate the HexImage.c and HexImage.h files.

9.1 For CY8CKIT-038 PSoC 4 Development Kit
To test the HSSP project on a PSoC 4 processor module (CY8CKIT-038) on the CY8CKIT-001 DVK, using PSoC 5LP
as the host, use the A_Hssp_Programmer project attached with the application note. Program the project in PSoC 5LP
of the CY8CKIT-050 DVK. Use Figure 4 to help you make the connections between the host and target. Pressing SW2
starts the HSSP operation.

Figure 4. Host/Target Connections

PSoC 4200PSoC 5LP
(Host)

VDDD VDDD

SWDCLK (P0[1])

XRES (P0[2])

SWDIO (P0[0])

GND

SWDCLK (P3[3])

XRES

SWDIO (P3[2])

VDD

VSSD

1.8 – 5.5 V

0.1 uF

CY8CKIT-050 with
mounted character

LCD

CY8CKIT-038 PSoC 4
processor module on

CY8CKIT-001 with LCD

P1[6]
SW2 P1[6]

The hex file included by default in this project toggles pin P1[6] of PSoC 4 at 1-Hz frequency and displays “PSoC
Programmed” on the character LCD mounted on the CY8CKIT-001 DVK after a successful programming operation. To
start programming, press SW2 on the PSoC 5LP host. If programming is successful, pin P1[6] begins to toggle and the
character LCD displays the message. If programming is unsuccessful, PSoC 5LP displays the cause of the error on
the LCD mounted on the PSoC 5LP kit.

Note: If you are using any other host programmer, modify the source code as explained in Porting the HSSP Application
to a Host Programmer. Then, test the project by making the basic connections illustrated in Figure 3.

9.2 For Kits with Onboard PSoC 5LP Programmer (KitProg)
To test the HSSP project on the kits listed in Table 10, use the B_Hssp_Pioneer project attached with this application
note. Using this kit, you do not need an external host microcontroller; PSoC 5LP is present as an onboard
microcontroller.

http://www.cypress.com/
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-038-psoc-4200-family-processor-module-kit
http://www.cypress.com/?rID=37464&source=an84858
http://www.cypress.com/?rID=51577&source=an84858
http://www.cypress.com/?rID=37464&source=an84858

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 14

The onboard PSoC 5LP has bootloader firmware that can load and run new bootloadable applications through USB.
Therefore, the HSSP project is built as a bootloadable project, and you can download the B_Hssp_Pioneer.cyacd
project to PSoC 5LP via USB to be used as an HSSP host programmer.

This project uses a USB-to-UART component to display the programming outputs on a HyperTerminal, which is a
standard program used for serial communication.

The project requires the changes listed in Table 10 to work on CY8CKIT-040, CY8CKIT-042, CY8CKIT-044, CY8CKIT-
042-BLE. Note that corresponding changes should be done in the RegisterDefines.h file in the project.

Table 10. Pin Assignments for Different Kits

Host Pin CY8CKIT-
040

CY8CKIT-
042

CY8CKIT-
043

CY8CKIT-
044

CY8CKIT-
046

CY8CKIT-
042-BLE

Pin_SWDCK P12[3] P2[1] P12[3] P12[3] P12[3] P12[3]

Pin_SWDIO P12[2] P2[0] P12[2] P12[2] P12[2] P12[2]

Pin_XRES P12[4] P2[4] P12[4] P12[4] P12[4] P12[4]

To test this project, follow these steps:

1. Prepare the B_Hssp_Pioneer project:
a. Generate the files containing the programming data (HexImage.c, HexImage.h) for your target PSoC 4 device

using the HexFile Parser.
b. Replace the existing HexImage.c and HexImage.h files with the generated ones.
c. Double-click the bootloadable Component in TopDesign.cysch.
d. Select the Dependencies tab and click on the browse button associated with Bootloader HEX file as shown

in Figure 5.
e. Navigate to the PSoC 5LP Bootloader Files > KitProg folder provided with the application note and select

KitProg_Bootloader.hex.
The Bootloader ELF file is automatically generated when you select the Bootloader HEX file.

Figure 5. Bootloadable Dependencies for KitProg

f. Build the B_Hssp_Pioneer project.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 15

2. Enter PSoC 5LP bootloader in the Pioneer kit:
a. Remove the power supply by unplugging the USB cable.
b. Press and hold the reset switch (SW1) of the kit and plug in the USB cable.
The status LED starts to blink, indicating that PSoC 5LP is in the bootloader mode. Figure 6 shows the PSoC 4
Pioneer Kit and the location of the status LED and reset switch.

Figure 6. PSoC 4 Pioneer Kit

3. Bootload the HSSP project to PSoC 5LP:

a. Open the bootloader host tool. Choose Tools>Bootloader Host in PSoC Creator.
b. Click Filter, and then select the Show USB Devices checkbox.
c. Enter ‘0xF13B’ in the PID field (see Figure 7).

PSoC 5LP bootloader is listed as USB Human Interface Device in the Port list.

d. Click Open in the GUI and select the B_Hssp_Pioneer.cyacd file from the following path:
..\ AN84858 \ B_Hssp_Pioneer.cydsn \ CortexM3 \ARM_GCC_441 \Debug \B_Hssp_Pioneer.cyacd

e. Click Program to bootload the file to PSoC 5LP.
Figure 7. Bootloader Host

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 16

4. Install the USBUART driver for the kit:
a. Unplug and reconnect the USB cable.
b. If Windows fails to install the USBUART drivers, open the Device Manager. Make sure that USBUART is

present in the Other devices list.
c. Double-click USBUART to open its properties.
d. Click Update Driver.
e. Select the option Browse my computer for driver software.
f. The driver is provided in the attached project under the folder USBUART. Navigate to the location where you

saved the project attached with this application note, and select the driver in the USBUART driver folder.
g. Click Next. Windows generates a warning because the driver files are not signed. Ignore the warning and

proceed. Now the USBUART driver is installed on your machine.
5. Use HyperTerminal to start HSSP programming:

a. Open HyperTerminal on your computer. If you do not have it, download any terminal application for serial
communication from the Internet.

b. In the UART configuration window, set the baud rate at 9600, data bits as 8, stop bits as 1, parity as No Parity,
and Hardware Control as None.

c. Press any alphanumeric button on the keyboard to start programming. If the operation is successful, the
terminal shows “HSSP Success” (see Figure 8).
If the programming operation fails, the terminal displays the step and error code that you can use to debug the
project (see Figure 8).

Figure 8. Terminal Display

6. Reprogram PSoC 5LP with the kit firmware:

a. Open PSoC Programmer.
b. Enter the bootloader as described in step 2.
c. Go to the Utilities tab and click Upgrade Firmware to reprogram PSoC 5LP with the original kit firmware

(Figure 9).

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 17

Figure 9. Upgrade Firmware using PSoC Programmer

9.3 For Kits with Onboard PSoC 5LP Programmer (KitProg2)
To test the HSSP project on kits listed in Table 10, use the B_Hssp_Pioneer project attached with this application note.
When using this kit, you do not need an external host microcontroller; PSoC 5LP is present as an onboard
microcontroller.

The onboard PSoC 5LP device has the bootloader firmware that can load and run new bootloadable applications
through USB. Therefore, the HSSP project is built as a bootloadable project, and you can download the
B_Hssp_Pioneer.cyacd project to PSoC 5LP via USB to be used as an HSSP host programmer.

This project uses a USB-to-UART Component to display the programming outputs on HyperTerminal, which is a
standard program used for serial communication.

The project requires the changes listed in Table 10 to work with the CY8CKIT-041-40xx kits. Note that corresponding
changes should be done in the RegisterDefines.h file in the project.

Table 11. Pin Assignments for Different Kits

Host Pin CY8CKIT-041-40xx CY8CKIT-149 CY8CKIT-147

Pin_SWDCK P12[3] P12[3] P12[3]

Pin_SWDIO P12[2] P12[2] P12[2]

Pin_XRES P12[4] P12[4] P12[4]

To test this project, follow these steps:

1. Prepare the B_Hssp_Pioneer project:
a. Generate the files containing the programming data (HexImage.c, HexImage.h) for your target device using

the HexFile Parser.
b. Replace the existing HexImage.c and HexImage.h files with the generated ones.
c. Double-click the bootloadable Component in TopDesign.cysch.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 18

d. Select the Dependencies tab and click Browse associated with the Bootloader HEX file as shown in
Figure 10.

e. Navigate to the PSoC 5LP Bootloader Files > KitPog2 folder provided with the application note and select
KitProg2_Bootloader.hex for the Bootloader HEX file field.
The Bootloader ELF file will be automatically generated on selecting the Bootloader HEX file.

Figure 10. Bootloadable Dependencies for KitProg2

f. Build the B_Hssp_Pioneer project.

2. Enter PSoC 5LP bootloader in the Pioneer kit:
a. Remove the power supply by unplugging the USB cable.
b. Press and hold SW3 of the kit and plug in the USB cable.
LED2 starts to blink, indicating that PSoC 5LP is in the bootloader mode. Figure 11 shows the PSoC CY8CKIT-
041-040xx Kit and the location of LED2 and SW3.

Figure 11. CY8CKIT – 041-040xx

3. Bootload the HSSP project to PSoC 5LP:

a. Open the bootloader host tool. Choose Tools > Bootloader Host in PSoC Creator.
b. Click on the Filter button, and then click on the Show USB Device’ checkbox.
c. Enter ‘0XF146’ in the PID field (see Figure 12).

PSoC 5LP bootloader is listed as USB Human Interface Device in the Port list.

d. Click Open the GUI and select the B_Hssp_Pioneer.cyacd file from the following path:
..\ AN84858 \ B_Hssp_Pioneer.cydsn \ CortexM3 \ARM_GCC_441 \Debug \B_Hssp_Pioneer_2.cyacd

e. Click Program to bootload the file to PSoC 5LP.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 19

Figure 12. Bootloader Host Application

4. Install the USBUART driver for the kit:

a. Unplug and reconnect the USB cable.
b. If Windows fails to install the USBUART drivers do the following:

i. Open Device Manager. Make sure USBUART is present in the Other devices list.

ii. Double-click the USBUART entry to open its properties.

iii. Click Update Driver.

iv. Select the Browse my computer for driver software option.

v. Navigate to the location where you saved the project attached with this application note, and select the
driver in the USBUART driver folder.

vi. Click Next. Windows generates a warning because the driver files are not signed. Ignore the warning and
proceed. Now the USBUART driver is installed on your machine

5. Use HyperTerminal to start HSSP programming:
a. Open HyperTerminal on your computer. If you do not have it, download any terminal application for serial

communication from the Internet.
b. In the UART configuration window, set the baud rate at 9600, data bits as 8, stop bits as 1, parity as No Parity,

and Hardware Control as None.
c. Press any alphanumeric button on the keyboard to start programming. If the operation is successful, the

terminal shows “HSSP Success” (see Figure 13).
If the programming operation fails, the terminal displays the step and error code that you can use to debug the project
(see Figure 13).

Figure 13. Terminal Display

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 20

6. Reprogram PSoC 5LP with the kit firmware:
a. Open PSoC Programmer.
b. Enter the bootloader as described in step 2.
c. Go to the Utilities tab and click Upgrade Firmware to reprogram PSoC 5LP with the original kit firmware

(Figure 14).
Figure 14. Upgrade Firmware using PSoC Programmer

10 Tips and Tricks for Debugging HSSP Issues
Porting the HSSP code from the PSoC 5LP host processor used in the code example to your own processor architecture
might be a complex task depending on the other system level constraints on the host processor side. This section helps
you in troubleshooting the most commonly encountered issues while developing an HSSP application for your hardware
platform.

 Hardware Setup Validation: The first step is to ensure that the hardware connections are done properly for the
HSSP operation. This includes making the correct pin connections between the host processor and the target
PSoC 4 device, powering of all the PSoC 4 voltage domains, and ensuring the host SWD pins drive mode settings
are configured appropriately. See the “Physical Layer” section of the respective device programming specification,
listed in the section - Programming Specifications - for details on the hardware connections and configuration.

 Timing Validation: When porting the host PSoC 5LP code to your host processor, ensure that the timeout
parameters used in the code are modified to reflect the host processor code timing. See the section - Calculating
HSSP Timeout Parameters – for information on modifying the timeout parameters while porting the code.
The first step of the HSSP “Device Acquire” has strict timing requirements with regards to entering the programming
mode. One of the important requirements is to ensure that the frequency of SWDCK clock line is at least 1.5 MHz
to meet the acquire window timing. Ensure that there are no interrupt events in the host processor, which can affect
the code execution time for completing the “Device Acquire” step on the host processor side. Ensure that the host
processor is able to meet all the timing requirements explained in “Step 1 – Acquire Chip” of the respective device
programming specification document.

 HSSP Algorithm Validation:
 While porting the HSSP code, if any changes were made to the SWD packet layer files shown in Figure 1,

ensure that the SWD packet format is the same as that mentioned in the section “Serial Wire Debug (SWD)
Format” in the device programming specification.

 Cypress qualified programmers like MiniProg3, KitProg can be used to validate and debug the steps like
“Erase Flash”, “Program Flash” in Figure 1. For example, to check if the host processor erased the entire flash
memory, the MiniProg3 programmer and the “Read” option in the PSoC Programmer GUI can be used to

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 21

verify that the entire flash data is zero. The “Checksum” option in PSoC Programmer GUI can be used to
ensure that the checksum of the flash data programmed in to the device matches the checksum of the hex file
that is fed as the input file to the GUI. Additionally, the “Patch Image” option in the PSoC Programmer GUI
can be used to identify the number of flash rows for which there is a data mismatch between the device flash
content and the hex file data.

11 Summary
The HSSP application is useful for developing in-system programming solutions for PSoC 4 devices. It provides a
cheap and robust method for programming PSoC 4 devices using an onboard embedded microcontroller as a host
programmer. The portable and modular C code provided with this application note greatly reduces the time it takes to
develop such HSSP applications.

12 Related Documentation
12.1 Application Notes

 AN73054 – PSoC® 3 / PSoC 5LP Programming Using an External Microcontroller (HSSP)

 AN44168 – PSoC® 1 Device Programming using External Microcontroller (HSSP)

12.2 Programming Specifications
 CYBL10x6x, CY8C4127_BL, CY8C4247_B: Programming Specifications

 CY8C4XXXM, PSoC 41xxS, PSoC 41xxS Plus, PSoC 40xxS, PSoC 4100PS Programming Specifications

 CY8C41XX, CY8C42XX Programming Specifications

 CY8C4000 Programming Specifications

12.3 Architecture Technical Reference Manuals
 PSoC 4000 Family: PSoC® 4 Architecture Technical Reference Manual (TRM)

 PSoC 4100 and 4200 Family: PSoC® 4 Architecture Technical Reference Manual (TRM)

 PSoC 4100M/4200M Family: PSoC® 4 Architecture Technical Reference Manual (TRM)

 PSoC 41X7_BLE/42X7_BLE Family: PSoC® 4 BLE Architecture Technical Reference Manual (TRM)

 PSoC 4100S and PSoC 4100S Plus: PSoC® 4 Architecture Technical Reference Manual (TRM)

 PSoC 4000S: PSoC® 4 Architecture Technical Reference Manual (TRM)

 PSoC 4100PS: PSoC® 4 Architecture Technical Reference Manual (TRM)

12.4 Web Page
 General PSoC Programming

13 List of Attached Projects
AN84858.cywrk: This workspace contains three projects to demonstrate the HSSP application.

 A_Hssp_Programmer: This is PSoC 4 HSSP application project. It has a PSoC 5LP device, which acts as the host
programmer to program the target PSoC 4 device. This project is developed using modular C code to program the
device according to the steps described in the programming specifications document of the respective device listed
in the Related Documentation section.

 B_Hssp_Pioneer: This is the PSoC 4 HSSP application project for testing on the PSoC 4 Pioneer Kit. It uses the
onboard PSoC 5LP programmer to program PSoC 4 devices.

 C_Hssp_TimeoutCalc: This project is used to calculate the timestamp parameters used in the PSoC 4 HSSP
projects.

In addition, a C# application to extract information from the hex file is attached with the application note:

 Hex File Parser application: This C# application extracts the required information from the hex file and parses it in
a .c/h file. This file is stored in the flash of the microcontroller and is used to directly access the programming data.

http://www.cypress.com/
http://www.cypress.com/?rID=57435&source=an84858
http://www.cypress.com/?rID=2906&source=an84858
http://www.cypress.com/?rID=104932
http://www.cypress.com/?rID=111105
http://www.cypress.com/?rID=78468
http://www.cypress.com/?rID=94554
http://www.cypress.com/?rID=94025
http://www.cypress.com/?rID=78684
http://www.cypress.com/?rID=112147
http://www.cypress.com/?rID=99430
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4100s-family-psoc-4-architecture-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000s-family-psoc-4-architecture-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4000s-family-psoc-4-architecture-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4100ps-family-psoc-4-architecture-technical-reference
http://www.cypress.com/documentation/technical-reference-manuals/psoc-4100ps-family-psoc-4-architecture-technical-reference
http://www.cypress.com/?rID=2543

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 22

About the Author
Name: Tushar Rastogi

Title: Applications Engineer

Background: Tushar has a bachelor’s degree in Electronics and Communication Engineering from
MNNIT, Allahabad.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 23

Appendix A. Hex File Parser Application
The data for programming PSoC 4 is available in the hex file (.hex) format, which is explained in the section “Appendix
B. Intel Hex File Format“ of the programming specifications document of the respective device listed in the Related
Documentation section.

The hex file is not in a format that can be used by a host to program the target device. This file, which is generated by
the PSoC Creator software, contains both the programming data and the metadata in hexadecimal format. The
metadata includes information on the hex file record type, extended linear address data, and so on. This metadata is
used to categorize the programming data into flash code region data, flash configuration region data, flash protection
data, and so on.

A C# application has been developed in the Visual Studio development environment that parses the hex file and
generates the .c and .h (HexImage.c, HexImage.h) files, which store only the programming data from the hex files. The
programming data is stored as an array of constants in the HexImage.c and HexImage.h files.

The C# application with the source code is provided along with the application note. To use the C# application, you
must install .NET Framework version 3.5 or higher on your computer.

Note: Separate Hex File Parser applications are provided for the PSoC 4000, PSoC 4100/4200,
PSoC 4100M/4200M, PSoC 4xx7_BLE, PSoC 4xx8_BLE, PSoC 4xxxL, PSoC 40xxS, PSoC 41xxS, PSoC 41xxS Plus,
and PSoC 41xxPS device families.

C# Application Name: Hex File Parser

Development environment: Microsoft Visual Studio Express 2013 (Version 12.0.31101.00 Update 4)

Source code: See the C# source project for details. The project source code can be viewed and edited by downloading
and installing the freely available Microsoft Visual Studio 2013 Express edition. Simply right-click the Form1.cs file in
the Solution Explorer window and select the View Code option. This action opens the source code of Form1.cs.

A.1 Using the Hex File Parser Application
 Nine sets of parser applications are available in the folder ‘C# Application’. Choose the appropriate application
depending on the PSoC 4 family you are using.

Open the executable file of the Hex File Parser application in the folder C# Application\HexFile Parser.exe of the
attached .zip file. A GUI screen pops up, as Figure 15 shows.

Figure 15. Hex File Parser Application

1. Select the hex file that needs to be programmed by clicking Open Source P4 Hex File and navigating to the
location of the file.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 24

2. Select the destination folder location in which the parsed .c and .h files (HexImage.h, HexImage.c) should be
created. Click Select Target File Folder to select the folder location.
Note: Make sure that there are no files with the names HexImage.h or HexImage.c already in the target folder
location. Delete any such files or select a new folder location. A message is displayed to notify you if the same file
names are already present in the target folder location.

3. After selecting the hex file and the target folder location, click Parse Hex File to generate the .c and .h files. After
parsing is complete, a message is displayed.

A.2 Adding the Generated Files to PSoC Creator Example Project
To add the generated HexImage.c and HexImage.h files to the PSoC Creator example project provided with this
application note, follow the steps in this section. They are required if you need to program a hex file into a target device
using PSoC 5LP as a host programmer. These steps apply to the project A_Hssp_Programmer and B_Hssp_Pioneer
for PSoC 4 HSSP.

1. Select the Target File Folder location in the GUI, as shown in Figure 15. This is the folder in which the main.c file
of the project is located.

2. After the HexImage.c and HexImage.h files have been generated in the previous location, add those files to the
project workspace in PSoC Creator by clicking Add Existing Item in Workspace Explorer, as Figure 16 shows.

Figure 16. Adding Files to PSoC Creator Project

After these files are selected, the Workspace Explorer window appears, as Figure 17 shows.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 25

Figure 17. Project Workspace showing HexImage.c and HexImage.h Files

If you need to replace these files in the project with those corresponding to a different hex file, delete the existing files
from the Workspace Explorer and project folder by right-clicking and deleting the files. Then follow steps 1 through 0 to
add the new files to the project.

A.2.1 Using the HexImage.c , HexImage.h Fi les for the PSoC 4xxxL/ PSoC 41x8_BLE/
42x8_BLE/ 41XXS Plus Family Devices:
The HSSP code examples use a PSoC 5LP device as a host programmer to program the target PSoC 4device.
Because the HSSP algorithm in the host PSoC 5LP will consume a portion of its 256 KB Flash memory, the entire hex
file data of larger flash memory devices, like the devices belonging to the 256 KB PSoC 4xxxL/PSoC
41x8_BLE/42x8_BLE families, cannot be stored in the flash memory of the host PSoC 5LP.
In B_HSSP_Pioneer project, the entire 128 KB of PSoC 41xxS Plus device cannot be stored in the onboard PSoC 5 of
CY8CKIT-159 as it uses KitProg2 which has dual application image bootloading.
To meet the code size requirements, the programming data corresponding to the last few flash rows is deleted from
the HexImage.c and HexImage.h files. The corresponding logic has also been incorporated in the
HEX_ReadRowData(…) function in the DataFetch.c file. The changes done are listed below. See the project code for
viewing the exact changes.
1. In the HexImage.h file, the number of flash rows in the array declaration is reduced by 256 by editing the array

declaration as below:
extern unsigned char const flashData_HexFile[(NUMBER_OF_FLASH_ROWS_HEX_FILE -
256)][FLASH_ROW_BYTE_SIZE_HEX_FILE];

The choice of 256 rows was arrived so that the code size of the project fits the host PSoC 5LP flash memory
capacity for all target devices.

2. In the HexImage.c file, the last 256 flash rows are deleted from the definition of the array
flashData_HexFile[][] corresponding to the changes done in the array declaration in the HexImage.h file.

3. In the definition of the function HEX_ReadRowData (…) in the DataFetch.c file, the entire flash row data is loaded
with zero in the case of the flash row number being in the last 256 rows of the target device.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 26

Appendix B. Status Codes for SROM Request
All programming-related operations are implemented as system call functions. They are executed out of the SROM in
the privileged mode of operation.

You have no access to read or modify the SROM code. The DAP or the Cortex-M0 CPU requests the system call by
writing the function opcode and function parameters to certain registers and then requesting the SROM to execute the
function. Based on the function opcode, the SROM executes the corresponding system call from its memory and
updates the function execution status in a register. The DAP or the CPU should read this status register for the pass/fail
result of the function execution.

When SROM_SYSREQ_BIT (bit 31) and SROM_PRIVILEGED_BIT (bit 28) of the CPUSS_SYSREQ register are
cleared, that indicates the completion of the system call. The CPUSS_SYSARG register is read to check the success
or failure status of the system call.

If the 32-bit value read from the register is 0xAXXXXXXX (X denotes don’t care values), the system call was successful.
If the value read from the register is in the form 0xF00000YY, it indicates failure, and YY indicates the reason for failure.
Table 12 shows the list of error codes.

For more details, see the “Nonvolatile Memory Programming” chapters of the respective PSoC 4 Architecture Technical
Reference Manuals (TRM) listed in the Related Documentation section.

Table 12. Error Status Codes and Reason for Failure

Status Code
(32-Bit Value in

CPUSS_SYSARG Register)

Description

0xAXXXXXXX Success. The value “X” denotes the “don’t care” value, which contains 0 as returned by the
SROM unless the API returns the parameter directly to the CPUSS_SYSARG register.

0x F0000001 Invalid Chip Protection Mode: This API is not available during the current chip protection mode.

0x F0000003 Invalid Page Latch Address: The address within the page latch buffer is either out of bounds or
the size provided is too large for the page address.

0x F0000004 Invalid Address: The row ID or byte address provided is outside the available memory.

0x F0000005 Row Protected: The row ID provided is that of a protected row.

0x F0000006 SRAM Address Invalid: The SRAM address is out of bounds.

0x F0000007 Resume Completed: All non-blocking APIs have been completed. The resume API cannot be
called until the next non-blocking API.

0x F0000008 Pending Resume: A non-blocking API was initiated, and it must be completed by calling the
resume API before any other APIs may be called.

0x F0000009 System Call Still In Progress: A resume or non-blocking API is still in progress. The SPC ISR
must fire before attempting the next resume.

0x F000000A Checksum Zero Failed: The calculated checksum was not zero.

0x F000000B Invalid Opcode: The opcode is not a valid API opcode.

0x F000000C Key Opcode Mismatch; The opcode provided does not match key1 and key2.

0x F000000E Invalid Start Address: The start address is greater than the end address provided.

0xF0000012 Invalid Flash Clock: The CY8C40xx family of devices must set the IMO to 48 MHz and the HF
clock source to the IMO clock before write/erase operations.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 27

Appendix C. Bit Field Definitions of HSSP Error Status Register
The HSSP Error Status Register contains the status of the current HSSP operation. When any of the top-level steps in
the HSSP application returns a failure status, the ReadHsspErrorStatus() function is called from the main
application code to get the details of the error. This function returns the contents of this register. See Figure 2 for the
bit fields returned by this function.

For a successful HSSP operation, all bits except bit 0 of this 8-bit register must be zero. If bit 0 is set, it indicates that
the SWD packet received an OK ACK, as Table 13 shows.

C.1 Bits[2:0] – SWD Acknowledge Response (SWD ACK [2:0])
This is the 3-bit acknowledgment response for an SWD packet sent by the target device to the host programmer. The
possible ACK codes are listed in Table 13.

Table 13. SWD ACK Response Codes

ACK[2:0] ACK Response
Meaning

Description

001 OK (SUCCESS) This means that a previous SWD transaction was successful.

010 WAIT This error code indicates that the target has returned five WAIT ACK responses
consecutively.

100 FAULT This error code indicates that there is a parity error in the 4-byte data packet sent by the
host during the previous SWD write packet.

Any other code Undefined code Treat this as a FAULT response.

All the responses except the OK ACK response require that the host abort the HSSP operation and restart from the
first step. Even for an OK ACK, the rest of the bit fields (bits 3 to 6) in the status register in Figure 2 should not be set.
If any of the other bit fields are set even with the OK ACK, the HSSP operation must be aborted and restarted.

WAIT ACK is received if the host programmer tries to clock SWDCK at a frequency higher than the maximum specified
value of SWDCK in the programming specifications.

C.2 Bit 3 – SWD Read Data Parity Error
The host programmer sets this bit if a parity error occurs in the data received from the target device. The host must
abort the HSSP operation and try again.

C.3 Bit 4 – Port Acquire Timeout
This bit is set if the SWD packets that are part of acquiring the target device (Step 1. The DeviceAcquire()function
in the ProgrammingSteps.c file) are not completed successfully. If this bit is set, the HSSP operation must be aborted
and retried.

There are two possible causes for this timeout error: Either the hardware connection fails between the host programmer
and the target device, or the host programmer fails to meet the timing requirements to enter the target device
programming mode.

For details on the timing requirements to enter the PSoC 4 programming mode, see “Step 1: Acquire Chip” in the
programming specifications document of the respective device listed in the Related Documentation section.

C.4 Bit 5 – SROM Polling Timeout Error
Flash programming in PSoC 4 is done by using SROM APIs. This bit is set when the PollSromStatus() function
returns an error status. The CPUSS_SYSREQ register is polled for the status code for 1 second. This bit is set if the
time exceeds 1 second or if the status code returned by this function corresponds to FAILURE. This function is called
in all the HSSP steps to read the status of SROM system requests.

If this bit is set, the host programmer must call the ReadSromStatus() function in ProgrammingSteps.h to read and
display the value of the status code returned during polling.

For more details on SROM status codes, see Status Codes for SROM Request.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 28

C.5 Bit 6 – Verification Failure
This error bit, which is set in multiple steps, can fail in verification for multiple reasons, as Table 14 explains.

Table 14. Verification Errors – Steps and Reasons

Error Step Error Reason for Error

Device Acquire (Step 1) Device ID Verification Error IDCODE returned by device does not match the Cortex-M0 DAP ID
(0x0BB11477).

Verify Silicon ID (Step 2) Silicon ID Verification Error Silicon ID information in the hex file does not match the Silicon ID
read from the target device.

Verify Flash (Step 6) Flash Data Verification Error Flash data does not match the data in the hex file.

Verify Protection Settings (Step 7) Flash Protection Data
Verification Error

Row protection data or chip protection data read from the silicon
does not match the hex file data.

Verify Checksum (Step 9) Checksum Verification Error Checksum value of the flash data in the target device does not match
the checksum data in the hex file.

It is clear from the previous conditions that bit 6 can be set in many verification error cases. Based on the step in which
the bit is set, you can infer the cause of the verification failure. For example, if the bit is set in the “Verify Silicon ID”
step, the host programmer application can determine that the error is due to the mismatch of the silicon ID.

C.6 Bit 7 – Transition Error
This bit is set when the chip protection settings read from the chip and the chip protection settings stored in the hex file
indicate a wrong transition.

See “Appendix A. Chip-Level Protection” of the programming specifications document of the respective device listed in
the Related Documentation section to learn about protection modes and the state diagram for valid and invalid
transitions.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 29

Appendix D. HSSP Functions
The following tables list the public functions defined in each layer of the HSSP firmware architecture. These functions
are used to communicate between the layers of the HSSP firmware, as Figure 1 shows.

Table 15. Functions in SWD_PhysicalLayer.h

Function Description

SetSwdckHigh() Sets the host SWDCK pin HIGH.
SetSwdioHigh() Sets the host SWDIO pin HIGH.
SetXresHigh() Sets the host XRES pin HIGH.
SetSwdckLow() Sets the host SWDCK pin LOW.
SetSwdioLow() Sets the host SWDIO pin LOW.
SetXresLow() Sets the host XRES pin LOW.
SetSwdckCmosOutput() Configures the host SWDCK pin for CMOS output drive mode.
SetSwdioCmosOutput() Configures the host SWDIO pin for CMOS output drive mode.
SetXresCmosOutput() Configures the host XRES pin for CMOS output drive mode.
SetSwdckHizInput() Configures the host SWDCK pin for high-impedance digital input drive mode.
SetSwdioHizInput() Configures the host SWDIO pin for high-impedance digital input drive mode.
SetXresHizInput() Configures the host XRES pin for high-impedance digital input drive mode.
ReadSwdio() Returns the current state of the SWDIO input pin.

Table 16. Functions in SWD_PacketLayer.h

Function Description

Swd_WritePacket() Sends an SWD write packet. This function operates on the global variables
swd_PacketHeader, swd_PacketAck, and swd_PacketData[].

Swd_ReadPacket() Sends a single SWD read packet. This function operates on the global variables
swd_PacketHeader, swd_PacketAck, and swd_PacketData[]. This function is used for
reading from a specific address.

SwdLineReset() Resets the SWD line by sending 51 SWDCK clock cycles with SWDIO line HIGH.
Used to acquire the debug access port (DAP) during step 1 of programming.

Table 17. Functions in SWD_UpperPacketLayer.h

Function Description

Read_DAP Reads a 32-bit data from the specific DAP register and writes it to
Swd_PacketData[].This function uses the Swd_ReadPacket() function to read the
data.

Write_DAP Writes a 32-bit data to the specific DAP register. This function uses the
Swd_WritePacket() function to write the data.

Read_IO Reads a 32-bit data from the specified address of the CPU address space. This
function is implemented by using the Read_DAP() and Write_DAP() functions. Returns
“true” if all SWD transactions succeeded (ACKed).

Write_IO Writes a 32-bit data into the specified address of the CPU address space. This
function is implemented by using the Write_DAP() function. Returns “true” if all SWD
transactions succeeded.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 30

Table 18. Function in Timeout.h

Function Description

DelayHundredUs() Introduces a delay of 100 µs to generate an active LOW pulse signal lasting for 100 µs
on the XRES pin.

Table 19. Functions in DataFetch.h

Function Description

HEX_ReadSiliconId() Copies the device silicon ID data from the HexImage.c file to an indicated destination
array.

HEX_ReadRowData() Copies the flash row data from the HexImage.c file to an indicated destination array.
The flash row number is also passed as a parameter to this function.

HEX_ReadRowProtectionData() Copies the flash row protection data from the HexImage.c file to an indicated
destination array. The byte size of the protection data is also passed as a parameter to
this function.

HEX_ReadChipProtectionData Copies the chip protection data from the HexImage.c file to an indicated destination.
HEX_ReadChecksumData() Copies the checksum data from the HexImage.c file to an indicated destination.
GetFlashRowCount() Returns the total number of flash rows in the target device from the HexImage.c file.

Table 20. Functions in ProgrammingSteps.h

Function Description
DeviceAcquire() Enters the programming mode and acquires the target device.
VerifySiliconId() Verifies whether the silicon ID of the target device and the hex file match.
EraseAllFlash() Erases the entire flash memory of the target device, including the flash protection data.
ChecksumPrivileged() Calculates the checksum of the privileged data in flash.
ProgramFlash() Programs the flash memory of the target device.
VerifyFlash() Verifies whether the flash data programmed to the target device matches the hex file

flash data.
ProgramProtectionSettings() Programs the row protection data and chip protection data to the target device.
VerifyProtectionSettings() Verifies whether the row protection data and chip protection data programmed to the

target device matches the data in the hex file.
VerifyChecksum() Verifies whether the checksum data read from the target device matches the hex file

checksum data.
ExitProgrammingMode() Exits the target device programming mode by generating an active LOW pulse signal

on the XRES pin.
ReadHsspErrorStatus() Returns the error status of the HSSP operation.
ReadSromStatus() Returns the CPUSS_SYSARG status register value in the case of an SROM polling

timeout error condition.

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 31

Document History
Document Title: AN84858 - PSoC 4 Programming Using an External Microcontroller (HSSP)

Document Number: 001-84858

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3995049 TUSR 05/14/2013 New Application Note for HSSP applications on PSoC 4

*A 4073726 GMRL 07/22/2013 Removed submit document feedback link

*B 4183545 RNJT 11/05/2013 Updated associated project

*C 4223201 RNJT 12/17/2013 Added information on CY8C40xx family

*D 4347319 RNJT 04/15/2014 Updated projects for PSoC Creator 3.0 SP1
Completing Sunset Review

*E 4675817 RNJT 03/04/2015 Updated for PSoC 4xxxM family

*F 4767408 ARVI 05/19/2015 Updated for the PSoC 4xx7_BL family
Added Table 9. Timeout for Acquiring Device

*G 4867159 VVSK 08/24/2015 Updated the C# application to work with hex files of all the devices in the
supported families
Added sections on Power cycle mode programming, Tips and Tricks for
debugging HSSP issues
Projects updated to add support for PSoC 41xx8_BLE/42xx8_BLE families

*H 4922631 RNJT 09/16/2015 Updated for the PSoC 4xxxL family
Updated the example projects to support CY8CKIT-046

*I 5068136 RNJT 12/30/2015 Updated the example projects to PSoC Creator 3.3 SP1

*J 5574344 JSLN 03/23/2017 AN updated to support PSoC 4000S, PSoC 4100S and PSoC Analog
Coprocessor
Modified Figure 3 to include PSoC 4000S, PSoC 4100S and PSoC Analog
Coprocessor
Modified table 9 to include PSoC 4000S, PSoC 4100S and PSoC Analog
Coprocessor
Modified section 5.3 to calculate XRES_PULSE_100US
Modified Section 9.2 to update the path for Bootloader hex files and removed
mention of the default LED blinking project
Added Section 9.3 for Kits with Onboard PSoC 5LP Programmer (KitProg2)
Updated related documentation section
Updated template

*K 5963425 TAVA 11/01/2017 Updated template
Updated Figure 3 with the information of PSoC 4100S Plus devices
Updated Table 9 with the information of PSoC 4100S Plus devices
Updated Architecture Technical Reference Manuals with the information of
Architecture TRM of PSoC 4100S Plus devices

*L 6073008 JSLN 02/02/2018 Updated Table 9 to modify PSoC 4100S Plus timeout constraint parameter.
Updated Table 11 with pin assignments for PSoC 4100S Plus.
Updated Section A.2.1 to include PSoC 4100S Plus information.
Updated projects and hex file parser to support PSoC 4100S Plus.

*M 6284058 DIMA 08/30/2018 Updated for PSoC 4100PS

http://www.cypress.com/

PSoC 4 Programming Using an External Microcontroller (HSSP)

www.cypress.com Document No. 001-84858 Rev.*M 32

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products
Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community
Community | Projects | Videos | Blogs | Training |
Components

Technical Support
cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2013-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	1.1 Types of Programmers
	1.2 Terms and Definitions

	2 HSSP Firmware Architecture
	2.1 SWD Protocol Physical Layer
	2.2 SWD Protocol Packet Layer
	2.3 Fetching Programming Data
	2.4 HSSP Programming Steps
	2.5 HSSP Timeout Parameters
	2.6 HSSP Programming Data
	2.7 Main Application Code
	2.8 HSSP Error Status

	3 Hardware Connections for HSSP Programming
	4 Porting the HSSP Application to a Host Programmer
	4.1 Files That Must Be Ported
	4.2 Code Changes Required While Porting

	5 Calculating HSSP Timeout Parameters
	5.1 DEVICE_ACQUIRE_TIMEOUT
	5.2 SROM_POLLING_TIMEOUT
	5.3 XRES_PULSE_100US

	6 Interface for Receiving HSSP Programming Data
	7 HSSP Timing Validation
	8 Power Cycle Mode Programming
	9 Testing the Example Projects
	9.1 For CY8CKIT-038 PSoC 4 Development Kit
	9.2 For Kits with Onboard PSoC 5LP Programmer (KitProg)
	9.3 For Kits with Onboard PSoC 5LP Programmer (KitProg2)

	10 Tips and Tricks for Debugging HSSP Issues
	11 Summary
	12 Related Documentation
	12.1 Application Notes
	12.2 Programming Specifications
	12.3 Architecture Technical Reference Manuals
	12.4 Web Page

	13 List of Attached Projects
	Appendix A. Hex File Parser Application
	A.1 Using the Hex File Parser Application
	A.2 Adding the Generated Files to PSoC Creator Example Project
	A.2.1 Using the HexImage.c, HexImage.h Files for the PSoC 4xxxL/ PSoC 41x8_BLE/ 42x8_BLE/ 41XXS Plus Family Devices:

	Appendix B. Status Codes for SROM Request
	Appendix C. Bit Field Definitions of HSSP Error Status Register
	C.1 Bits[2:0] – SWD Acknowledge Response (SWD ACK [2:0])
	C.2 Bit 3 – SWD Read Data Parity Error
	C.3 Bit 4 – Port Acquire Timeout
	C.4 Bit 5 – SROM Polling Timeout Error
	C.5 Bit 6 – Verification Failure
	C.6 Bit 7 – Transition Error

	Appendix D. HSSP Functions
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

