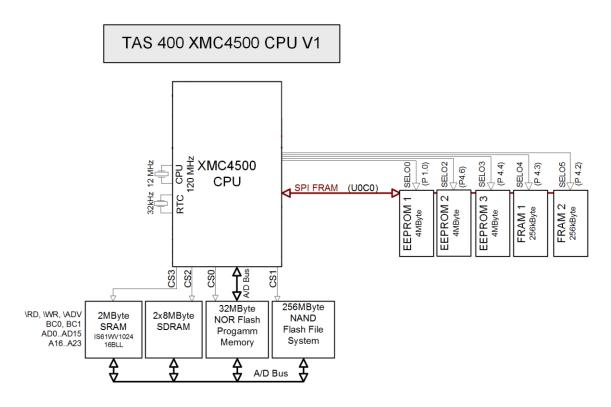


XMC4700 CPU Bus-Fault


during DMA-Transfer

<u>Inhaltsverzeichnis</u>

1.	PROBLEM DESCRIPTION	;
2	SAMPLE PROJECT	

1. PROBLEM DESCRIPTION

Our hardware consists of the XMC4x00 CPU and several external components including non-volatile flash memory connected over SPI-Bus, NOR-flash, NAND-flash and external RAM connected over EBU:

RSE-Hardware with XMC4500 / XMC4700 (Simplified Block diagram)

During the migration from the XMC4500 (Step AC) to XMC4700 CPU (Step AA) we have observed rare CPU Bus Faults. After checking CPU-Clocks, EBU-Timings and possible hardware differences, it became clear that the only difference was the CPU.

We managed to narrow the faults down to a sample project that can be compiled for both CPU types. On XMC4500 the code runs more than 12h without problems, on XMC4700 it produces a Bus Fault after about 1 to 60 minutes.

2. SAMPLE PROJECT

The project was created using Keil µVision 5, armcc v5.06u1 and adapted XMC4x00 startup files.

The project contains 2 targets 'XMC4500' and 'XMC4700'.

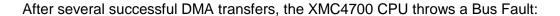
When switching from one target to the other, the memory map changes ('SDRAM1_RSE.sct' / 'SDRAM1_RSE_4700.sct') and the startup files (startup_XMC4x00.s, system_XMC4x00.c) change.

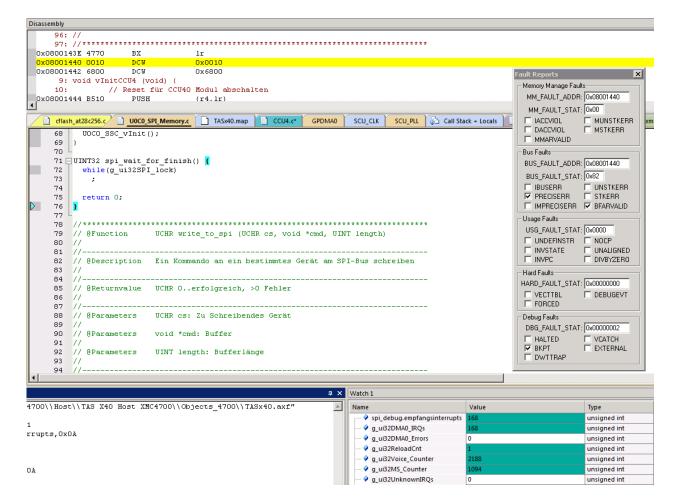
The CPU runs at 120 MHz.

The project uses the following Modules:

- SPI over USIC0
- DMA
- CCU4

The main() function initializes the hardware and starts 2 CCU-based timers that will produce interrupts in 1 ms and 0.5 ms intervals. Each interrupt just increases a global counter variable.


The main while-loop repeatedly loads data from a flash memory connected via SPI-Bus to the same memory range in external SRAM (0x681E0000 ... 0x681E0000 + 0x20000 Byte which are read in 32 blocks á 0x1000 Byte) using DMA-transfers.


The CPU acts as master on the SPI-Bus. 2 DMA-Channels are needed for each read/write combination to the flash memory on the SPI-Bus:

GPDMA0_CH4 .. SPI SIMO, GPDMA0_CH2 .. SPI SOMI

The load process consists of the following steps:

- for-loop with 32 iterations:
 - setup 2 DMA-Channels
 - 1-byte dummy transfer, if USIC-Module Transfer shift indication flag is set
 - send 4-byte command sequence to flash memory,
 - o receive requested 0x1000 Byte from flash memory in 2 DMA-Transfers:
 - First with 4000 Bytes and
 - Second with 96 Bytes

Sample Bus Fault

The same project runs without problems on the XMC4500 hardware.