
MATH
MATH Co-Processor
XMC™ microcontrollers
September 2016



Agenda

Overview

Key feature: 32-bit divide

Key feature: Trigonometric functions

Key feature: Vector rotation (Park transform)

System integration

Result chaining between Divider & CORDIC

Benchmarking results

1

2

3

4

5

6

7

2Copyright © Infineon Technologies AG 2016. All rights reserved.



Agenda

Overview

Key feature: 32-bit divide

Key feature: Trigonometric functions

Key feature: Vector rotation (Park transform)

System integration

Result chaining between Divider & CORDIC

Benchmarking results

1

2

3

4

5

6

7

3Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
MATH Co-Processor

Highlights

The MATH Co-Processor provides a
32-bit signed or unsigned divider as
well as a 24-bit CORDIC for
trigonometric calculations. Both
DIVIDER and CORDIC can operate in
parallel next to the CORTEX®-M0 CPU
core.

Customer benefitsKey features

MATH

Clock
Control

32-bit DIVIDER

24-bit CORDIC

Service
Request
Control

› 32-bit hardware divide for signed
and unsigned long integer numbers

› Trigonometric functions executed in
parallel to CPU operation

› Vector rotation (PARK transform)
executed in 24-bit resolution

› The calculation time of a divide
operation is reduced to 50%

› Increase of computational power for
real time critical tasks

› Field oriented motor control
algorithms are implemented with high
resolution

4Copyright © Infineon Technologies AG 2016. All rights reserved.



Agenda

Overview

Key feature: 32-bit divide

Key feature: Trigonometric functions

Key feature: Vector rotation (Park transform)

System integration

Result chaining between Divider & CORDIC

Benchmarking results

1

2

3

4

5

6

7

5Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
32-bit divide

› Signed/unsigned 32-bit division in 35 kernel clock cycles

› Operands pre-processing with configurable number of:

– Left shifts for dividend

– Right shifts for divisor

› Result post-processing with configurable number of shifts and
shift direction

6Copyright © Infineon Technologies AG 2016. All rights reserved.



Agenda

Overview

Key feature: 32-bit divide

Key feature: Trigonometric functions

Key feature: Vector rotation (Park transform)

System integration

Result chaining between Divider & CORDIC

Benchmarking results

1

2

3

4

5

6

7

7Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Trigonometric functions (1/2)

To calculate sin(angle) and cos(angle)

› Setup function to “Circular”, “Rotation Mode”

› X = 1/K, Y = 0, Z = “angle”

› Result_X = cos(angle)

› Result_Y = sin(angle)

8Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Trigonometric functions (2/2)

To calculate arctan(Y/X)

› Setup function to “Circular”, “Vectoring Mode”

› Z = 0

› Result_X = K sqrt(X² + Y²)

› Result_Z = arctan(Y/X)

9Copyright © Infineon Technologies AG 2016. All rights reserved.



Agenda

Overview

Key feature: 32-bit divide

Key feature: Trigonometric functions

Key feature: Vector rotation (Park transform)

System integration

Result chaining between Divider & CORDIC

Benchmarking results

1

2

3

4

5

6

7

10Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Vector rotation (Park transform)

To calculate Park transform

› Setup function to “Circular”, “Rotation Mode”

› X = , Y = , Z =

› Result_X = iq

› Result_Y = id

Park transform

11Copyright © Infineon Technologies AG 2016. All rights reserved.



Agenda

Overview

Key feature: 32-bit divide

Key feature: Trigonometric functions

Key feature: Vector rotation (Park transform)

System integration

Result chaining between Divider & CORDIC

Benchmarking results

1

2

3

4

5

6

7

12Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
System integration

› Target applications

– Motor control

– Intelligent lighting

– Power conversion

The math co-processor can be clocked with a

frequency of up to 64 MHz and is accessible via

the SFR interface. The sub-blocks, a 32-bit

divider and a 24-bit CORDIC can be used next

to the CPU independently. The execution of the

math unit can be configured to be twice the

MCU clock. Hence a divide is executed in 18

CPU clocks and a CORDIC function takes up to

31 CPU clocks.

In some use cases, the result of one sub-block

is needed as data input for the other sub-

block. A hardware mechanism is provided for

autonomous execution of both calculation with

result chaining.

The result that is read from the SFR-interface

is always provided as the latest result after

processing the math unit’s command. In case

the read instruction is executed while the math

is still busy, the bus-interface will add wait

states until the latest result is available.

XMC1200 XMC1300XMC1100

●

MATH

Clock
Control

DIVIDER

CORDIC

Service
Request
Control

SFR Interface

PCLK

MCLK

AHB-Lite

SR0

NVIC

Node 7

13Copyright © Infineon Technologies AG 2016. All rights reserved.



Agenda

Overview

Key feature: 32-bit divide

Key feature: Trigonometric functions

Key feature: Vector rotation (Park transform)

System integration

Result chaining between Divider & CORDIC

Benchmarking results

1

2

3

4

5

6

7

14Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Result chaining between Divider & CORDIC (1/6)

CORDIC’s result to DIV’s input

› Result of the CORDIC operation can be “forward” directly to the
Divider operand register, DVD and DVS

DIV’s result to CORDIC’s input

› QUOT and RMD result can be “forward” directly to the CORDIC
operand register, CORD[Z:X]

15Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Result chaining between Divider & CORDIC (2/6)

Global Control Register (GLBCON)

DVDRC

DVSRC

CORDXRC

CORDYRC

CORDZRC

16Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Result chaining between Divider & CORDIC (3/6)

The next few slides illustrate a simple example for result chaining

End of
CORDIC

computation

CORRX (X Result Register)

DVS (Divisor Register)

After the computation of the CORDIC operation, the result will be written
to CORRX. This result will also be written to DIV’s DVS.

17Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Result chaining between Divider & CORDIC (4/6)

› As the 24-bit CORDIC result is assigned to bit[8 to 31], it might
be necessary for some pre-processing of the input value before
the DIV operation

› DIVCON.DVSSRC ‒ right shift the input value before the division 
operation

DVS (Divisor Register)

DVSSRC = 8
Right shift by 8

Value at DVS

Value use for the
Division operation

18Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Result chaining between Divider & CORDIC (5/6)

› CORDIC is setup to Circular Vectoring Mode

› CORDIC will start when CORDX is written

› DIV will start when DVS is written

› The result of CORDIC’s CORRX will also update DIV’s DVS with the
same value

› This action will trigger the DIV operation to start

› The DIV’s post-processing compensated for the difference in bit length
of CORDIC(24-bit) and DIV(32-bit)

› As a result, the writing of CORDIC’s CORDX orderly start both CORDIC
and DIV

19Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Result chaining between Divider & CORDIC (6/6)

GLBCON = 0x0003;

// DVSRC = 011b; // DVS result will be updated when

// CORRX has new result

DIVCON = 0x08000000;

// ST_MODE = 0; // Auto-Start when DVS is written

// DVSSRC = 8; // DVS value will be shifted right by 8

DVD = 0x12345678; // Preload the Dividend value first

CON = 0x0020;

// MODE = 01b; // Circular Mode

// ROTVEC = 0; // Vectoring Mode

// ST_MODE = 0; // Auto-Start when CORDX is written

CORDY = (0x5678<<8); // Load Y parameter

CORDX = (0x1234<<8); // Load X parameter and start CORDIC

// Result Chain to DIV’s DVS will auto start DIV

20Copyright © Infineon Technologies AG 2016. All rights reserved.



Agenda

Overview

Key feature: 32-bit divide

Key feature: Trigonometric functions

Key feature: Vector rotation (Park transform)

System integration

Result chaining between Divider & CORDIC

Benchmarking results

1

2

3

4

5

6

7

21Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Benchmarking results (1/2)

› Execution time of a division operation and a cosine operation running
on the MATH library is benchmarked against that of a similar operation
running on standard C library

› Conditions:

– Execution time refers to complete function execution, inclusive of co-
processor configuration, writing of operands and state checking

– Ratio of PCLK to MCLK is 2:1

– Compliers from IFX, Keil and IAR were used

22Copyright © Infineon Technologies AG 2016. All rights reserved.



MATH
Benchmarking results (2/2)

› The benchmarking results are shown in the table below:

› Significant performance boosts are seen when using MATH library over
standard C library:

– ~ 7x performance for division

– ~ 38x performance for cosine

Compiler Division
(MCLK cycles)

Cosine
(MCLK cycles)

With
MATH LIB

With
Std C LIB

With
MATH LIB

With
Std C LIB

IAR EWARM v7.10 99 712 234 4574

Keil µVision v5.10 95 230 238 6514

DAVETM v3.1.10 114 415 258 9832

23Copyright © Infineon Technologies AG 2016. All rights reserved.



General information

› For latest updates, please refer to:

www.infineon.com/xmc1000

› For support:

http://www.infineonforums.com/forums/8-XMC-Forum

24Copyright © Infineon Technologies AG 2016. All rights reserved.

http://www.infineon.com/xmc1000
http://www.infineonforums.com/forums/8-XMC-Forum


› Product Briefs

› Selection Guides

› Application Brochures

› Presentations

› Press Releases, Ads

› Application Notes

› Technical Articles

› Simulation Models

› Datasheets, MCDS Files

› PCB Design Data

› Technical Videos

› Product Information

Videos

› Forums

› Product Support

Support material

Collaterals and

Brochures

Technical Material

Videos

Contact

› www.infineon.com/XMC

› www.infineon.com/XMC

› Kits and Boards

› DAVETM

› Software and Tool Ecosystem

› Infineon Media Center

› XMC Mediathek

› Infineon Forums

› Technical Assistance Center (TAC)

25Copyright © Infineon Technologies AG 2016. All rights reserved.

http://www.infineon.com/XMC
http://www.infineon.com/XMC
http://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-registered-cortex-registered-m/32-bit-xmc1000-industrial-microcontroller-arm-registered-cortex-registered-m0/xmc-development-tools-kits-and-boards/channel?channel=db3a30433d5e5530013d64397b0c2043
http://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-registered-cortex-registered-m/32-bit-xmc1000-industrial-microcontroller-arm-registered-cortex-registered-m0/dave-version-4-free-development-platform-for-?channel=5546d46145f1f3a4014619e925171bcc
http://www.infineon.com/cms/en/product/microcontroller/32-bit-industrial-microcontroller-based-on-arm-registered-cortex-registered-m/32-bit-xmc1000-industrial-microcontroller-arm-registered-cortex-registered-m0/xmc-development-tools-software-tools-and-part?channel=5546d46145f1f3a4014619e9bcfa1bcd
http://www.infineon.com/mediacenter
http://www.infineon.com/cms/media/Applications/microcontrollers/XMC/Mediathek.html
http://www.infineonforums.com/
http://www.infineon.com/cms/en/about-infineon/company/contacts/product-support-form/


The information given in this training materials is given as a hint for
the implementation of the Infineon Technologies component only and
shall not be regarded as any description or warranty of a certain
functionality, condition or quality of the Infineon Technologies
component.

Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind (including without limitation warranties of non-
infringement of intellectual property rights of any third party) with
respect to any and all information given in this training material.

Disclaimer




	MATH �MATH Co-Processor
	Agenda
	Agenda
	MATH�MATH Co-Processor
	Agenda
	MATH�32-bit divide
	Agenda
	MATH�Trigonometric functions (1/2)
	MATH�Trigonometric functions (2/2)
	Agenda
	MATH�Vector rotation (Park transform)
	Agenda
	MATH�System integration
	Agenda
	MATH�Result chaining between Divider & CORDIC (1/6)
	MATH�Result chaining between Divider & CORDIC (2/6)
	MATH�Result chaining between Divider & CORDIC (3/6)
	MATH�Result chaining between Divider & CORDIC (4/6)
	MATH�Result chaining between Divider & CORDIC (5/6)
	MATH�Result chaining between Divider & CORDIC (6/6)
	Agenda
	MATH�Benchmarking results (1/2)
	MATH�Benchmarking results (2/2)
	General information
	Support material
	Disclaimer
	Slide Number  27

