MATH

MATH Co-Processor
XMC ${ }^{\text {TM }}$ microcontrollers
September 2016

Agenda

Overview

Key feature: 32-bit divide
Key feature: Trigonometric functions
Key feature: Vector rotation (Park transform)
System integration
Result chaining between Divider \& CORDIC

Benchmarking results

Agenda

Key feature: Trigonometric functions
Key feature: Vector rotation (Park transform)
System integration
Result chaining between Divider \& CORDIC
Benchmarking results

MATH
 MATH Co-Processor

Highlights

The MATH Co-Processor provides a 32-bit signed or unsigned divider as well as a 24-bit CORDIC for trigonometric calculations. Both DIVIDER and CORDIC can operate in parallel next to the CORTEX ${ }^{\circledR}-\mathrm{MO}$ CPU core.

Customer benefits

, The calculation time of a divide operation is reduced to 50%
, Increase of computational power for real time critical tasks
, Field oriented motor control algorithms are implemented with high resolution

Agenda

Overview

Key feature: Trigonometric functions
Key feature: Vector rotation (Park transform)
System integration
Result chaining between Divider \& CORDIC
Benchmarking results

MATH 32-bit divide

, Signed/unsigned 32-bit division in 35 kernel clock cycles
, Operands pre-processing with configurable number of:

- Left shifts for dividend
- Right shifts for divisor
, Result post-processing with configurable number of shifts and shift direction

Agenda

Overview
Key feature: 32-bit divide
Key feature: Trigonometric functions
Key feature: Vector rotation (Park transform)
System integration
Result chaining between Divider \& CORDIC
Benchmarking results

MATH

Trigonometric functions (1/2)

Function	Rotation Mode	Vectoring Mode
	$d_{\mathrm{i}}=\operatorname{sign}\left(z_{\mathrm{i}}\right), z_{\mathrm{i}} \rightarrow 0$	$d_{\mathrm{i}}=-\operatorname{sign}\left(y_{\mathrm{i}}\right), y_{\mathrm{i}} \rightarrow 0$
Circular $\begin{aligned} & m=1 \\ & e_{\mathrm{i}}=\operatorname{atan}\left(2^{-1}\right) \end{aligned}$	$\begin{aligned} & X_{\text {final }}=\mathrm{K}[X \cos (Z)-Y \sin (Z)] / \mathrm{MPS} \\ & Y_{\text {final }}=\mathrm{K}[Y \cos (Z)+X \sin (Z)] / \mathrm{MPS} \\ & Z_{\text {final }}=0 \\ & \text { where } \mathrm{K} \approx 1.646760258121 \end{aligned}$	$\begin{aligned} & X_{\text {final }}=\mathrm{K} \operatorname{sqrt}\left(X^{2}+Y^{2}\right) / \mathrm{MPS} \\ & Y_{\text {final }}=0 \\ & Z_{\text {final }}=Z+\operatorname{atan}(Y / X) \\ & \text { where } \mathrm{K} \approx 1.646760258121 \end{aligned}$
$\begin{aligned} & \text { Linear } \\ & m=0 \\ & e_{\mathrm{i}}=2^{-1} \end{aligned}$	$\begin{aligned} & X_{\text {final }}=X / \mathrm{MPS} \\ & Y_{\text {final }}=[Y+X Z] / \mathrm{MPS} \\ & Z_{\text {final }}=0 \\ & \hline \end{aligned}$	$\begin{aligned} & X_{\text {final }}=X / \mathrm{MPS} \\ & Y_{\text {final }}=0 \\ & Z_{\text {final }}=Z+Y / X \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Hyperbolic } \\ & m=-1 \\ & e_{i}=\operatorname{atanh}\left(2^{-1}\right) \end{aligned}$	$\begin{aligned} & X_{\text {final }}=\mathrm{k}[X \cosh (Z)+Y \sinh (Z)] / \\ & \text { MPS } \\ & Y_{\text {final }}=\mathrm{k}[Y \cosh (Z)+X \sinh (Z)] / \\ & \text { MPS } \\ & Z_{\text {final }}=0 \\ & \text { where } \mathrm{k} \approx 0.828159360960 \end{aligned}$	$\begin{aligned} & \hline X_{\text {final }}=\mathrm{k} \operatorname{sqrt}\left(X^{2}-Y^{2}\right) / \mathrm{MPS} \\ & Y_{\text {final }}=0 \\ & Z_{\text {final }}=Z+\operatorname{atanh}(Y / X) \\ & \text { where } \mathrm{k} \approx 0.828159360960 \end{aligned}$

To calculate sin(angle) and \cos (angle)
, Setup function to "Circular", "Rotation Mode"
, $\mathrm{X}=1 / \mathrm{K}, \mathrm{Y}=0, \mathrm{Z}=$ "angle"
, Result_X $=\cos ($ angle $)$
, Result_Y = sin(angle)

MATH

Trigonometric functions (2/2)

Function	Rotation Mode	Vectoring Mode
	$d_{\mathrm{i}}=\operatorname{sign}\left(z_{\mathrm{i}}\right), z_{\mathrm{i}} \rightarrow 0$	$d_{\mathrm{i}}=-\operatorname{sign}\left(y_{i}\right), y_{i} \rightarrow 0$
Circular $\begin{aligned} & m=1 \\ & e_{\mathrm{i}}=\operatorname{atan}\left(2^{-1}\right) \end{aligned}$	$\begin{aligned} & X_{\text {final }}=\mathrm{K}[X \cos (Z)-Y \sin (Z)] / \mathrm{MPS} \\ & Y_{\text {final }}=\mathrm{K}[Y \cos (Z)+X \sin (Z)] / \mathrm{MPS} \\ & Z_{\text {final }}=0 \\ & \text { where } \mathrm{K} \approx 1.646760258121 \end{aligned}$	$\begin{aligned} & X_{\text {final }}=\mathrm{K} \operatorname{sqrt}\left(X^{2}+Y^{2}\right) / \mathrm{MPS} \\ & Y_{\text {final }}=0 \\ & Z_{\text {final }}=Z+\operatorname{atan}(Y / X) \\ & \text { where } \mathrm{K} \approx 1.646760258121 \end{aligned}$
$\begin{aligned} & \text { Linear } \\ & m=0 \\ & e_{\mathrm{i}}=2^{-1} \end{aligned}$	$\begin{aligned} & X_{\text {final }}=X / \mathrm{MPS} \\ & Y_{\text {final }}=[Y+X Z] / \mathrm{MPS} \\ & Z_{\text {final }}=0 \end{aligned}$	$\begin{aligned} & X_{\text {final }}=X / \mathrm{MPS} \\ & Y_{\text {final }}=0 \\ & Z_{\text {final }}=Z+Y / X \\ & \hline \end{aligned}$
$\begin{aligned} & \hline \text { Hyperbolic } \\ & m=-1 \\ & e_{\mathrm{i}}=\operatorname{atanh}\left(2^{-1}\right) \end{aligned}$	$\begin{aligned} & \hline X_{\text {final }}=\mathrm{k}[X \cosh (Z)+Y \sinh (Z)] / \\ & \text { MPS } \\ & Y_{\text {final }}=\mathrm{k}[Y \cosh (Z)+X \sinh (Z)] / \\ & \text { MPS } \\ & Z_{\text {final }}=0 \\ & \text { where } \mathrm{k} \approx 0.828159360960 \end{aligned}$	$\begin{aligned} & \hline X_{\text {final }}=\mathrm{k} \operatorname{sqrt}\left(X^{2}-Y^{2}\right) / \mathrm{MPS} \\ & Y_{\text {final }}=0 \\ & Z_{\text {final }}=Z+\operatorname{atanh}(Y / X) \\ & \text { where } \mathrm{k} \approx 0.828159360960 \end{aligned}$

To calculate $\arctan (\mathrm{Y} / \mathrm{X})$
, Setup function to "Circular", "Vectoring Mode"
, $Z=0$
, Result_X $=\mathrm{K} \operatorname{sqrt}\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)$
, Result_Z $=\arctan (\mathrm{Y} / \mathrm{X})$

Agenda

Overview
Key feature: 32-bit divide
Key feature: Trigonometric functions
Key feature: Vector rotation (Park transform)
System integration
Result chaining between Divider \& CORDIC
Benchmarking results

MATH

Vector rotation (Park transform)

Function	Rotation Mode	Vectoring Mode
	$d_{\mathrm{i}}=\operatorname{sign}\left(z_{\mathrm{i}}\right), z_{\mathrm{i}} \rightarrow 0$	$d_{\mathrm{i}}=-\operatorname{sign}\left(y_{\mathrm{i}}\right), y_{\mathrm{i}} \rightarrow 0$
Circular $\begin{aligned} & m=1 \\ & e_{\mathrm{i}}=\operatorname{atan}\left(2^{-1}\right) \end{aligned}$	$\begin{aligned} & X_{\text {final }}=\mathrm{K}[X \cos (Z)-Y \sin (Z)] / \mathrm{MPS} \\ & Y_{\text {final }}=\mathrm{K}[Y \cos (Z)+X \sin (Z)] / \mathrm{MPS} \\ & Z_{\text {final }}=0 \\ & \text { where } \mathrm{K} \approx 1.646760258121 \end{aligned}$	$\begin{aligned} & X_{\text {final }}=\mathrm{K} \operatorname{sqrt}\left(X^{2}+Y^{2}\right) / \mathrm{MPS} \\ & Y_{\text {final }}=0 \\ & Z_{\text {final }}=Z+\operatorname{atan}(Y / X) \\ & \text { where } \mathrm{K} \approx 1.646760258121 \end{aligned}$
Linear $\begin{aligned} & m=0 \\ & e_{\mathrm{i}}=2^{-\mathrm{i}} \end{aligned}$	$\begin{aligned} & \hline X_{\text {final }}=X / \mathrm{MPS} \\ & Y_{\text {final }}=[Y+X Z] / \mathrm{MPS} \\ & Z_{\text {final }}=0 \\ & \hline \end{aligned}$	$\begin{aligned} & X_{\text {final }}=X / \mathrm{MPS} \\ & Y_{\text {final }}=0 \\ & Z_{\text {final }}=Z+Y / X \\ & \hline \end{aligned}$
Hyperbolic $\begin{aligned} & m=-1 \\ & e_{\mathrm{i}}=\operatorname{atanh}\left(2^{-1}\right) \end{aligned}$	$\begin{aligned} & X_{\text {final }}=\mathrm{k}[X \cosh (Z)+Y \sinh (Z)] / \\ & \text { MPS } \\ & Y_{\text {final }}=\mathrm{k}[Y \cosh (Z)+X \sinh (Z)] / \\ & \text { MPS } \\ & Z_{\text {final }}=0 \\ & \text { where } \mathrm{k} \approx 0.828159360960 \end{aligned}$	$\begin{aligned} & \hline X_{\text {final }}=\mathrm{k} \mathrm{sqrt}\left(X^{2}-Y^{2}\right) / \mathrm{MPS} \\ & Y_{\text {final }}=0 \\ & Z_{\text {final }}=Z+\operatorname{atanh}(Y / X) \\ & \text { where } \mathrm{k} \approx 0.828159360960 \end{aligned}$

Park transform

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{d}}=\mathrm{i}_{\alpha} \cos \varphi+\mathrm{i}_{\beta} \sin \varphi \\
& \mathrm{i}_{\mathrm{q}}=-\mathrm{i}_{\alpha} \sin \varphi+\mathrm{i}_{\beta} \cos \varphi
\end{aligned}
$$

To calculate Park transform
, Setup function to "Circular", "Rotation Mode"
, $X=i_{\beta}, Y=i_{\alpha}, Z=\varphi$
, Result_X = iq
, Result_Y = id

Agenda

Overview
Key feature: 32-bit divide
Key feature: Trigonometric functions
Key feature: Vector rotation (Park transform)

System integration

Result chaining between Divider \& CORDIC
Benchmarking results

MATH

System integration

, Target applications

- Motor control
- Intelligent lighting
- Power conversion

The math co-processor can be clocked with a frequency of up to 64 MHz and is accessible via the SFR interface. The sub-blocks, a 32-bit divider and a 24-bit CORDIC can be used next to the CPU independently. The execution of the math unit can be configured to be twice the MCU clock. Hence a divide is executed in 18 CPU clocks and a CORDIC function takes up to 31 CPU clocks.

In some use cases, the result of one sub-block is needed as data input for the other subblock. A hardware mechanism is provided for autonomous execution of both calculation with result chaining.

The result that is read from the SFR-interface is always provided as the latest result after processing the math unit's command. In case the read instruction is executed while the math is still busy, the bus-interface will add wait states until the latest result is available.

Agenda

Overview
Key feature: 32-bit divide
Key feature: Trigonometric functions
Key feature: Vector rotation (Park transform)
System integration
Result chaining between Divider \& CORDIC
Benchmarking results

MATH
 Result chaining between Divider \& CORDIC (1/6)

CORDIC's result to DIV's input
, Result of the CORDIC operation can be "forward" directly to the Divider operand register, DVD and DVS

DIV's result to CORDIC's input
, QUOT and RMD result can be "forward" directly to the CORDIC operand register, CORD[Z:X]

MATH

Result chaining between Divider \& CORDIC (2/6)

Global Control Register (GLBCON)

[^0]CORDXRC
CORDYRC

MATH
 Result chaining between Divider \& CORDIC (3/6)

The next few slides illustrate a simple example for result chaining

After the computation of the CORDIC operation, the result will be written to CORRX. This result will also be written to DIV's DVS.

MATH
 Result chaining between Divider \& CORDIC (4/6)

DVS (Divisor Register)

rwh
, As the 24-bit CORDIC result is assigned to bit[8 to 31], it might be necessary for some pre-processing of the input value before the DIV operation
, DIVCON.DVSSRC - right shift the input value before the division operation

Value at DVS

DVSSRC = 8
Right shift by 8
Value use for the Division operation

Result chaining between Divider \& CORDIC (5/6)

Function	Vectoring Mode
	$d_{\mathrm{i}}=-\operatorname{sign}\left(y_{\mathrm{i}}\right), y_{i} \rightarrow 0$
Circular	$X_{\text {final }}=\mathrm{K} \operatorname{sqrt}\left(X^{2}+Y^{2}\right) / \mathrm{MPS}$
$m=1$	$Y_{\text {final }}=0$
$e_{\mathrm{i}}=\operatorname{atan}\left(2^{-1}\right)$	$Z_{\text {final }}=Z+\operatorname{atan}(Y / X)$
	where $\mathrm{K} \approx 1.646760258121$

, CORDIC is setup to Circular Vectoring Mode
, CORDIC will start when CORDX is written
, DIV will start when DVS is written
, The result of CORDIC's CORRX will also update DIV's DVS with the same value
, This action will trigger the DIV operation to start
, The DIV's post-processing compensated for the difference in bit length of CORDIC(24-bit) and DIV(32-bit)
, As a result, the writing of CORDIC's CORDX orderly start both CORDIC and DIV

Result chaining between Divider \& CORDIC (6/6)

```
GLBCON = 0x0003;
    // DVSRC = 011b;
DIVCON = 0x08000000;
    // ST_MODE = 0;
    // DVSSRC = 8;
DVD = 0x12345678;
CON = 0x0020;
    // MODE = 01b;
    // ROTVEC = 0;
    // ST_MODE = 0;
CORDY = (0x5678<<8);
CORDX = (0x1234<<8);
```

// DVS result will be updated when
// CORRX has new result
// Auto-Start when DVS is written
// DVS value will be shifted right by 8
// Preload the Dividend value first
// Circular Mode
// Vectoring Mode
// Auto-Start when CORDX is written
// Load Y parameter
// Load X parameter and start CORDIC
// Result Chain to DIV's DVS will auto start DIV

Agenda

Overview
Key feature: 32-bit divide
Key feature: Trigonometric functions
Key feature: Vector rotation (Park transform)
System integration
Result chaining between Divider \& CORDIC

Benchmarking results

MATH

, Execution time of a division operation and a cosine operation running on the MATH library is benchmarked against that of a similar operation running on standard C library
, Conditions:

- Execution time refers to complete function execution, inclusive of coprocessor configuration, writing of operands and state checking
- Ratio of PCLK to MCLK is 2:1
- Compliers from IFX, Keil and IAR were used

MATH Benchmarking results (2/2)

, The benchmarking results are shown in the table below:

Compiler		Division (MCLK cycles)		Cosine (MCLK cycles)	
	With MATH LIB	With Std C LIB	With MATH LIB	With Std C LIB	
IAR EWARM v7.10	99	712	234	4574	
Keil μ Vision v5.10	95	230	238	6514	
DAVE $^{\text {TM }}$ v3.1.10	114	415	258	9832	

, Significant performance boosts are seen when using MATH library over standard C library:

- ~ 7x performance for division
- ~ 38x performance for cosine

General information

, For latest updates, please refer to: www.infineon.com/xmc1000
, For support: http://www.infineonforums.com/forums/8-XMC-Forum

Support material

Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of noninfringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

Part of your life. Part of tomorrow.
infineon

[^0]: Dividend Register Result Chaining
 The DVD register in DIV will be updated with the selected result register value when the result
 chaining trigger event occurs.
 000_{B} No result chaining is selected
 001_{B} QUOT register is the selected source
 010_{B} RMD register is the selected source
 011_{B} CORRX is the selected source
 100_{B} CORRY is the selected source
 101_{B} CORRZ is the selected source
 CORDX Register Result Chaining
 The CORDX register in CORDIC will be updated with
 the selected result register value when the result
 chaining trigger event occurs.
 00_{B} No result chaining is selected
 01_{B} QUOT register is the selected source
 10_{B} RMD register is the selected source

