

V1.0 1 2015-07

About this document

Scope and purpose

This document describes how to use the MATH Coprocessor for the XMC 32-bit Microcontroller. The

document includes code snippets and examples for a variety of use cases.

Intended audience

This document is intended for engineers who are developing applications that require math-intensive

computations with the XMC Microcontroller series.

Applicable Products

 XMC130x

 XMC140x

 DAVE ™

References

Infineon: Example code: http://www.infineon.com/XMC1000 Tab: Documents

Infineon: XMC Lib, http://www.infineon.com/DAVE

Infineon: DAVE™, http://www.infineon.com/DAVE

Infineon: XMC Reference Manual, http://www.infineon.com/XMC1000 Tab: Documents

Infineon: XMC Data Sheet, http://www.infineon.com/XMC1000 Tab: Documents

XMC 1000
32-bit Microcontroller Series for Industrial Applications

Math Coprocessor (MA TH)
AP32307

Application Note

http://www.infineon.com/XMC1000
http://www.infineon.com/DAVE
http://www.infineon.com/DAVE
http://www.infineon.com/XMC1000
http://www.infineon.com/XMC1000

Math Coprocessor (MATH)

AP32307

Table of Contents

Application Note 2 V1.0, 2015-07

Table of Contents

About this document ... 1

Table of Contents .. 2

1 MATH Coprocessor Overview ... 3

1.1 Features ... 3

1.2 MATH Library ... 3

2 Division Operation .. 4

2.1 Configuration for Signed or Unsigned division operation ... 4

2.2 Configuration for starting the division operation .. 4

2.3 Poll for the result to be ready ... 5

2.4 Generate an Interrupt when result is ready ... 5

2.5 Divide by Zero Error .. 5

2.6 Using XMC Lib for DIV operations ... 6

2.7 DIVS Benchmarking Results .. 7

3 CORDIC .. 9

3.1 Configuration for CORDIC operation .. 9

3.2 Configuration for starting CORDIC operation .. 10

3.3 Poll for the result to be ready ... 11

3.4 Generate an Interrupt on completion .. 11

3.5 Using XMC Lib for CORDIC calculation .. 11

3.5.1 Calculating exp(z) .. 13

3.6 CORDIC Examples .. 13

3.6.1 Calculating Vector Magnitude and Angle ... 13

3.6.2 Calculating ln(x) .. 14

3.6.3 Calculating sqrt(x) ... 15

3.7 CORDIC Benchmarking Results .. 16

4 Result Chaining ... 17

4.1 Data Compatibility between 32-bit DIV and 24-bit CORDIC ... 17

4.2 Transfer of data from DIV to CORDIC .. 18

4.3 Transfer of data from CORDIC to DIV .. 18

4.4 Handling Busy Flags during Result Chaining ... 18

4.5 Result Chaining Example .. 18

5 Appendix .. 20

6 Revision History .. 21

Math Coprocessor (MATH)

AP32307

MATH Coprocessor Overview

Application Note 3 V1.0, 2015-07

1 MATH Coprocessor Overview

The Math Coprocessor (MATH) module provides assistance for math-intensive computations. The module

comprises of two independent sub-blocks which are executed in parallel to the CPU core. The two sub-

blocks are:

 A 32-bit Divider Unit (DIV) for signed and unsigned division functions

 A 24-bit CORDIC (COrdinate Rotation DIgital Computer) for trigonometric, linear and hyperbolic

functions

1.1 Features

The MATH module includes the following features:

 Divide function with operand pre-processing and result post-processing

 CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions

 Support kernel clock to interface clock ratio 2:1 for faster execution

 Support result chaining between the Divider Unit and CORDIC Coprocessor

1.2 MATH Library

The MATH library is a collection of Application Programming Interfaces (APIs) to compute common

mathematical operations such as division, modulus and trigonometric functions. The APIs configure the

respective registers of the MATH sub-blocks to perform the requested calculations. The library is provided as

part of the XMC Library (XMC Lib) from Infineon.

The APIs provided in the MATH library can be categorized as Blocking and Non-blocking. The blocking APIs

poll for the result by reading the result register. This adds wait states to the bus until the result is ready.

While waiting for the result, all other operations are blocked, hence the name.

The non-blocking APIs start the desired calculations and then control is returned to the calling thread. This

allows other operations to continue. The user can check if a calculation has ended by polling the busy flag of

the MATH Coprocessor. When the busy flag is cleared, the user can read the calculation result by calling the

GetResult APIs.

Note: The occurence of interrupts during the execution of non-blocking APIs may lead to erroneous results.

For example, the execution of a divide instruction (‘/’) in an interrupt service routine during the

execution of a non-blocking API may give erroneous results.

Math Coprocessor (MATH)

AP32307

Division Operation

Application Note 4 V1.0, 2015-07

2 Division Operation

DIVS supports the truncated division operation, which is the ISO C99 standard and the most popular choice

among modern processors:

 q = D divide by d

 r = D modulus by d

“D” is the dividend (DVD register)

“d” is the divisor (DVS register)

“q” is the quotient (QUOT register)

“r” is the remainder (RMD register)

2.1 Configuration for Signed or Unsigned division operation

Configuration is via the DIVCON.USIGN bit:

 DIVCON.USIGN = 0 Signed division

 DIVCON.USIGN = 1 Unsigned division

2.2 Configuration for starting the division operation

There are two methods for starting the division operation. Either:

1. Set the ST bit

2. Or have the division operation start automatically by loading a value into the DVS register

Starting the division operation by setting the ST bit

MATH->DIVCON = (1<<MATH_CON_ST_MODE_Pos); // DIVCON.STMODE = 1

 // Calculation start when ST bit is set

MATH->DVD = 0x12345678; // Load the dividend value

MATH->DVS = 0x11223344; // Load the divisor value

MATH->DIVCON |= (1<<MATH_CON_ST_Pos); // DIVCON.ST = 1

 // ST bit is set. The division begins

Starting the division operation automatically

MATH->DIVCON = (0<<MATH_CON_ST_MODE_Pos); // DIVCON.STMODE = 0

 // Calculation start when write to DVS register

MATH->DVD = 0x12345678; // Load the dividend value

MATH->DVS = 0x11223344; // Load the divisor value, the division begin

Math Coprocessor (MATH)

AP32307

Division Operation

Application Note 5 V1.0, 2015-07

2.3 Poll for the result to be ready

The division operation takes 35 kernel clock cycles. The BSY flag is set to 1 when the division operation

starts.

On completion, the quotient and remainder values are available in the QUOT and RMD registers, and the BSY

flag is cleared.

 DIVST.BSY = 0 DIV is not running any division operation

 DIVST.BSY = 1 DIV is still running a division operation

// Insert code for division operation to start

while(MATH->DIVST); // Wait until DIV is ready (Not busy)

// Insert code to read out result

2.4 Generate an Interrupt when result is ready

When the division is finished, the Divider event flag EVFR.DIVEOC is set. This can trigger an interrupt request

to the NVIC by enabling the EVIER.DIVEOCIEN bit. This event flag can only be cleared by a software write to

the EVFCR.DIVEOCC bit:

MATH->EVIER = (1<<MATH_EVIER_DIVEOCIEN_Pos); // EVIER.DIVEOCIEN = 1

 // End of divider calculation interrupt generation is enabled

NVIC_EnableIRQ(7); // Enabled MATH interrupt node

// Insert code for division operation to start

……………………………………………………………………………………………

// Inside the MATH ISR

MATH->EVFCR = (1<<MATH_EVFCR_DIVEOCC_Pos); // EVFCR.DIVEOCC = 1

 // Clear Divider end of calculation flag in EVFR

2.5 Divide by Zero Error

If a division operation is started with the divisor value equal to 0, the EVFR.DIVERR flag is set. The interrupt

request to the NVIC can be generated by enabling it with EVIER.DIVERRIEN. This event flag can only be

cleared by a software write to the EVFCR.DIVERRC bit.

MATH->EVIER = (1<<MATH_EVIER_DIVERRIEN_Pos); // EVIER.DIVERRIEN = 1

 // Divider error interrupt generation is enabled

NVIC_EnableIRQ(7); // Enabled MATH interrupt node

// Insert code for division operation to start

……………………………………………………………………………………………

// Inside the DIV_ERROR ISR

MATH->EVFCR = (1<<MATH_EVFCR_DIVERRC_Pos); // EVFCR.DIVERRC = 1

 // Clear the Divider error event flag in EVFR

Math Coprocessor (MATH)

AP32307

Division Operation

Application Note 6 V1.0, 2015-07

2.6 Using XMC Lib for DIV operations

The MATH Library provides alternate implementations of the ARM Embedded Application Binary Interface

(AEABI) functions for division and modulus operations. These alternate implementations use the DIV sub-

block to perform the operations. The following examples demonstrate their usage:

Blocking division operation

uint32_t a = 5000;

uint32_t b = 250;

uint32_t c = a / b;

Blocking modulus operation

uint32_t a = 5000;

uint32_t b = 240;

uint32_t c = a % b;

In both examples above, the ‘/’ and ‘%’ operators are automatically recognized and the respective AEABI

functions are called to perform the operations using the DIV sub-block.

Note: Only signed and unsigned integer division and modulus operations are supported by the MATH Library.

Non-blocking division operation

/* variable initialization */

uint32_t calculation_dividend = 5000;

uint32_t calculation_divisor = 250;

uint32_t calculation_result;

/* unsigned division calculation */

XMC_MATH_DIV_UnsignedDivNB(calculation_dividend,calculation_divisor);

while(XMC_MATH_DIV_IsBusy()); // wait for calculation to end

calculation_result = XMC_MATH_DIV_GetUnsignedDivResult();

In the example above, the XMC_MATH_DIV_IsBusy() API is used to check for the end of calculation.

Alternatively, the user can also perform other operations and read the CORDIC calculation result only after a

determined number of clock cycles or use an interrupt. The following example demonstrates the usage of an

interrupt.

Math Coprocessor (MATH)

AP32307

Division Operation

Application Note 7 V1.0, 2015-07

Non-blocking modulus operation

/* variable initialization */

uint32_t calculation_dividend = 5000;

uint32_t calculation_divisor = 240;

uint32_t calculation_result;

/* configure DIV end-of-calculation interrupt */

XMC_MATH_EnableEvent(XMC_MATH_EVENT_DIV_END_OF_CALC);

NVIC_SetPriority(MATH0_0_IRQn,3);

NVIC_EnableIRQ(MATH0_0_IRQn);

/* unsigned modulus calculation */

XMC_MATH_DIV_UnsignedModNB(calculation_dividend,calculation_divisor);

/* MATH Interrupt Handler */

void MATH0_0_IRQHandler(void)

{

 uint32_t calculation_result;

 XMC_MATH_ClearEvent(XMC_MATH_EVENT_DIV_END_OF_CALC);

 calculation_result = XMC_MATH_DIV_GetUnsignedModResult();

}

2.7 DIVS Benchmarking Results

The performance of the Divider is evaluated by benchmarking the execution time of a division operation

running on the MATH Library against that of a similar operation running on a standard C library. The

execution time is measured in terms of the number of MCLK cycles.

The conditions for the benchmarking are as follows:

 Execution time refers to complete function execution, inclusive of co-processor configuration, writing of

operands and state checking.

 The ratio of PCLK to MCLK is 2:1.

 Compilers from Infineon, Keil™ and IAR were used.

Math Coprocessor (MATH)

AP32307

Division Operation

Application Note 8 V1.0, 2015-07

Table 1 Benchmarking results for division operation

Compiler Number of MCLK cycles

With MATH Library With Standard C Library

IAR EWARM v7.10 99 712

Keil™ Vision v5.10 95 230

DAVETM v3.1.10 114 415

From the benchmarking results, a division operation with the MATH library can be up to 7 times faster than a

similar operation with the standard C library.

Math Coprocessor (MATH)

AP32307

CORDIC

Application Note 9 V1.0, 2015-07

3 CORDIC

The CORDIC algorithm is a useful convergence method for 24-bit computation of trigonometric (circular),

linear (multiply-add), hyperbolic and related functions. It allows performance of vector rotation not only in

the Euclidian plane, but also in the Linear and Hyperbolic planes.

CORDX, CORDY, and CORDZ are Data registers which are used to initialize the X, Y and Z parameters.

Figure 1 CORDIC data register structure

CORRX, CORRY, and CORRZ are Result registers from the CORDIC calculation.

Figure 2 CORDIC result register structure

3.1 Configuration for CORDIC operation

Table 2 gives an overview of the different CORDIC operating modes.

X, Y and Z represent the initial data and Xfinal, Yfinal & Zfinal represent the final result data when the CORDIC

computation is completed.

Table 2 Operating Modes of CORDIC

Function Rotation Mode Vectoring Mode

Circular Xfinal = K[X cos(Z) - Y sin(Z)] / MPS

Yfinal = K[Y cos(Z) + X sin(Z)] / MPS

Zfinal = 0

K ≈ 1.646760258121

Xfinal = K sqrt(X2+Y2) / MPS

Yfinal = 0

Zfinal = Z + atan(Y / X)

K ≈ 1.646760258121

Linear Xfinal = X / MPS

Yfinal = [Y + X Z] / MPS

Zfinal = 0

Xfinal = X / MPS

Yfinal = 0

Zfinal = Z + Y / X

Math Coprocessor (MATH)

AP32307

CORDIC

Application Note 10 V1.0, 2015-07

Function Rotation Mode Vectoring Mode

Hyperbolic Xfinal = k[X cosh(Z) + Y sinh(Z)] / MPS

Yfinal = k[Y cosh(Z) + X sinh(Z)] / MPS

Zfinal = 0

k ≈ 0.828159360960

Xfinal = k sqrt(X2-Y2) / MPS

Yfinal = 0

Zfinal = Z + atanh(Y / X)

k ≈ 0.828159360960

The different modes are configured via the ROTVEC and MODE fields in the CON control register.

 CON.ROTVEC = 0 Vectoring Mode

 CON.ROTVEC = 1 Rotation Mode

 CON.MODE = 00b Linear Mode

 CON.MODE = 01b Circular Mode

 CON.MODE = 11b Hyperbolic Mode

The X and Y Magnitude Prescaler (MPS) prevents the result data from overflowing. At the end of calculation,

the computed values of X and Y are each divided by the MPS factor to yield the final result.

Note: Refer to the appendix for other mathematical calculations supported by CORDIC.

3.2 Configuration for starting CORDIC operation

There are two methods to start the CORDIC operation:

 Set the ST bit

 Or have the operation automatically start by loading a value into the CORDX register

Starting the CORDIC operation by setting the ST bit

MATH->CON = (1<<MATH_CON_ST_MODE_Pos); // CON.STMODE = 1;

 // Calculation start when ST bit is set to 1

MATH->CORDZ = 0x12345600;

MATH->CORDY = 0x11223300;

MATH->CORDX = 0x33221100;

MATH->CON |= (1<<MATH_CON_ST_Pos); // CON.ST = 1;

 // Start the CORDIC operation

Starting the CORDIC operation automatically

MATH->CON = (0<<MATH_CON_ST_MODE_Pos); // CON.STMODE = 0;

 // Calculation start with a write to CORDX

MATH->CORDZ = 0x12345600;

MATH->CORDY = 0x11223300;

MATH->CORDX = 0x33221100; // Load CORDX value and start CORDIC operation

Math Coprocessor (MATH)

AP32307

CORDIC

Application Note 11 V1.0, 2015-07

3.3 Poll for the result to be ready

The CORDIC operation takes 62 kernel clock cycles. The BSY flag is set when operation starts.

On completion, the BSY flag is cleared.

 STATC.BSY = 0 CORDIC is not computing any calculation

 STATC.BSY = 1 CORDIC is still computing a calculation

// Insert code for CORDIC to start

while((MATH->STATC)&(1<<MATH_STATC_BSY_Pos));

 // wait until CORDIC is ready (Not busy)

// Insert code to read out result

3.4 Generate an Interrupt on completion

At the end of the CORDIC computation, the event flag EVFR.CDEOC is set. An interrupt request to the NVIC

can be triggered by enabling the EVIER.CDEOCIEN bit. This event flag can only be cleared by a software write

to the EVFCR.CDEOCC bit.

MATH->EVIER = (1<<MATH_EVIER_CDEOCIEN_Pos); // EVIER.CDEOCIEN = 1

 // End of CORDIC calculation interrupt generation is enabled

NVIC_EnableIRQ(7); // Enable MATH interrupt node

// Insert code for CORDIC to start

………………………………………………………………………………………..

// Inside the MATH ISR

MATH->EVFCR = (1<<MATH_EVFCR_CDEOCC_Pos); // EVFCR.CDEOCC = 1

 // Clear CORDIC end of calculation event flag in EVFR

3.5 Using XMC Lib for CORDIC calculation

The MATH Library supports the following CORDIC calculations:

 Trigonometric: Sin, Cos, Tan, Atan

 Hyperbolic: Sinh, Cosh, Tanh

When using the XMC Lib APIs for calculations where the input data is an angle, it is essential that the input

angle is converted using the following equation:

Input_angle = (angle_in_rad) * 8388608 / π

For example, to calculate cos(π/6), the input angle is:

Input_angle = (π/6) * 8388608 / π = 1398101 or 0x155555

Math Coprocessor (MATH)

AP32307

CORDIC

Application Note 12 V1.0, 2015-07

Example using Blocking APIs

/* variable initialization */

XMC_MATH_Q0_23_t angle = 0x2AAAAA; // (pi/3)*8388608/pi

XMC_MATH_Q0_23_t calculation_result;

/* cosine of angle calculation */

calculation_result = XMC_MATH_CORDIC_Cos(angle);

Example using Non-Blocking APIs

/* variable initialization */

XMC_MATH_Q0_23_t angle = 0x155555; // (pi/6)*8388608/pi

XMC_MATH_Q0_23_t calculation_result;

/* cosine of angle calculation */

XMC_MATH_CORDIC_CosNB(angle);

while(XMC_MATH_CORDIC_IsBusy()); // wait for calculation to end

calculation_result = XMC_MATH_CORDIC_GetCosResult();

In the non-blocking API example above, the XMC_MATH_CORDIC_IsBusy() API is used to check for the end

of the calculation. The user can instead perform other operations and read the CORDIC calculation result

only after a determined number of clock cycles or use an interrupt. The following example demonstrates the

use of an interrupt.

Example using Non-Blocking API and Interrupt

/* variable initialization */

XMC_MATH_Q0_23_t angle = 0x860A91; // (pi/3)*8388608/pi

/* configure CORDIC end-of-calculation interrupt */

XMC_MATH_EnableEvent(XMC_MATH_EVENT_CORDIC_END_OF_CALC);

NVIC_SetPriority(MATH0_0_IRQn,3);

NVIC_EnableIRQ(MATH0_0_IRQn);

/* cosine of angle calculation */

XMC_MATH_CORDIC_CosNB(angle);

/* MATH Interrupt Handler */

void MATH0_0_IRQHandler(void)

{

Math Coprocessor (MATH)

AP32307

CORDIC

Application Note 13 V1.0, 2015-07

 XMC_MATH_Q0_23_t calculation_result;

 XMC_MATH_ClearEvent(XMC_MATH_EVENT_CORDIC_END_OF_CALC);

 calculation_result = XMC_MATH_CORDIC_GetCosResult();

}

3.5.1 Calculating exp(z)

It is known that:

exp(z) = sinh(z) + cosh(z)

The following example demonstrates how exp(0.5) can be calculated using the XMC Lib.

 /* variable initialization */

XMC_MATH_Q0_23_t angle = 0x145F30; // 0.5*8388608/pi

XMC_MATH_Q0_23_t calculation_result;

/* hyperbolic sine of angle calculation */

calculation_result = XMC_MATH_CORDIC_Sinh(angle);

/* hyperbolic cosine of angle calculation (also final result) */

calculation_result += XMC_MATH_CORDIC_Cosh(angle);

Although the MATH Library supports only the abovementioned calculations, the CORDIC sub-block is

capable of computing many other calculations. These calculations can be performed by manually

configuring the registers of CORDIC. Refer to Figure 6 for a more complete view on the different

computations that can be performed with CORDIC.

3.6 CORDIC Examples

This section provides some CORDIC use-cases.

3.6.1 Calculating Vector Magnitude and Angle

The following example illustrates the use of CORDIC in the Circular Vectoring Mode for the calculation of the

magnitude and angle of two vectors.

Table 3 CORDIC Circular Vectoring Mode

Function Vectoring Mode

Circular Xfinal = K sqrt(X
2
+Y

2
) / MPS

Yfinal = 0

Zfinal = Z + atan(Y / X)

K ≈ 1.646760258121

Math Coprocessor (MATH)

AP32307

CORDIC

Application Note 14 V1.0, 2015-07

MATH->CON = 0x0002; // MODE = 01b, Circular Mode

 // ROTVEC = 0, Vectoring Mode

 // ST_MODE = 0, Auto start when CORDX is written

MATH->CORDZ = 0; // Load the initial angle value

MATH->CORDY = (vector2<<8); // Load the magnitude of vector 2

MATH->CORDX = (vector1<<8); // Load the magnitude of vector 1

 // CORDIC will automatically start

while((MATH->STATC)&(1<<MATH_STATC_BSY_Pos));

 // wait until CORDIC is ready (Not busy)

Result_Mag = MATH->CORRX; // Read out the result

Result_Ang = MATH->CORRZ;

3.6.2 Calculating ln(x)

It is known that:

ln(x) = 2*atanh[(x-1)/(x+1)]

CORDIC can be used in the Hyperbolic Vectoring mode for the calculation above by setting the initial input

data as follows:

X = x + 1

Y = x - 1

The following example illustrates the calculation of ln(variable_x) using CORDIC.

MATH->CON = 0x0006; // MODE = 11b, Hyperbolic Mode

 // ROTVEC = 0, Vectoring Mode

 // ST_MODE = 0, Auto start when CORDX is written

MATH->CORDZ = 0; // Load the initial angle value

MATH->CORDY = ((variable_x-1)<<8); // Load (x-1)

MATH->CORDX = ((variable_x+1)<<8); // Load (x+1)

 // CORDIC will automatically start

while((MATH->STATC)&(1<<MATH_STATC_BSY_Pos));

 // wait until CORDIC is ready (Not busy)

Result = (MATH->CORRZ>>8); // Read out the result of atanh

Math Coprocessor (MATH)

AP32307

CORDIC

Application Note 15 V1.0, 2015-07

Result = 2*Result; // final result is scaled by 8388608/pi

Note: The result of this calculation has a scaling of 8388608/π.

3.6.3 Calculating sqrt(x)

It is known that:

sqrt(x) = sqrt[(x+0.25)2-(x-0.25)2]

CORDIC can be used in the Hyperbolic Vectoring mode for the calculation above by setting the initial input

data as follows:

X = (x + 0.25) / k

Y = (x - 0.25) / k where k = 0.82815936960

The user should ensure that the input data lie within the domain of convergence, meaning atanh|Y/X| ≤ 1.11

radians.

The following example demonstrates the square root calculation of a Q1.8 number. The calculated result is a

Q5.12 number.

#define GAIN 0x0135 // (2^8)/0.82815936960

uint32_t number = 0x01C0;

MATH->CON = 0x0006; // MODE = 11b, Hyperbolic Mode

 // ROTVEC = 0, Vectoring Mode

 // ST_MODE = 0, Auto start when CORDX is written

MATH->CORDZ = 0; // Load the initial angle value

MATH->CORDY = ((GAIN*(number-0x40))<<8); // Load (x-0.25)/k

MATH->CORDX = ((GAIN*(number+0x40))<<8); // Load (x+0.25)/k

 // CORDIC will automatically start

while((MATH->STATC)&(1<<MATH_STATC_BSY_Pos));

 // wait until CORDIC is ready (Not busy)

Result = (MATH->CORRX>>8); // Read out the result

Math Coprocessor (MATH)

AP32307

CORDIC

Application Note 16 V1.0, 2015-07

3.7 CORDIC Benchmarking Results

The performance of the CORDIC co-processor is evaluated by benchmarking the execution time of a cosine

calculation running on the MATH Library against that of a similar operation running on a standard C library.

The execution time is measured in terms of the number of MCLK cycles.

The conditions for the benchmarking are as follows:

 Execution time refers to complete function execution, inclusive of co-processor configuration, writing of

operands and state checking.

 The ratio of PCLK to MCLK is 2:1.

 Compilers from Infineon, Keil™ and IAR were used.

Table 4 Benchmarking results for cosine calculation

Compiler Number of MCLK cycles

With MATH Library With Standard C Library

IAR EWARM v7.10 234 4574

Keil Vision v5.10 238 6514

DAVETM v3.1.10 258 9832

From the benchmarking results, a cosine calculation with the MATH library can be up to 38 times faster than

a similar operation with the standard C library.

Math Coprocessor (MATH)

AP32307

Result Chaining

Application Note 17 V1.0, 2015-07

4 Result Chaining

The MATH Coprocessor supports result chaining between the DIV and CORDIC modules. The DIV result can

be passed to the input of the CORDIC data register. Similarly, the CORDIC result can also be passed to the

input of the DIV DVD and DVS registers.

GLBCON.DVDRC and GLBCON.DVSRC

 000b No result chaining

 001b QUOT register is the input to DIV

 010b RMD register is the input to DIV

 011b CORRX register is the input to DIV

 100b CORRY register is the input to DIV

 101b CORRZ register is the input to DIV

GLBCON.CORDXRC, GLBCON.CORDYRC and GLBCON.CORDZRC

 00b No result chaining

 01b QUOT register is the input to DIV

 10b RMD register is the input to DIV

4.1 Data Compatibility between 32-bit DIV and 24-bit CORDIC

The data and result register for the DIV are assigned to bits[0 to 31].

Figure 3 DIV data and result register structure

The data and result register for the CORDIC are assigned to bits[8 to 31].

Figure 4 CORDIC data and result register structure

Math Coprocessor (MATH)

AP32307

Result Chaining

Application Note 18 V1.0, 2015-07

4.2 Transfer of data from DIV to CORDIC

The DIV’s quotient final value can be left-shifted by 8 to fit into the CORDIC data register format.

 DIVCON.QSCNT Number of bits the quotient is shifted after the division

 DIV.QSDIR = 0 Left shift

 DIV.QSDIR = 1 Right shift

4.3 Transfer of data from CORDIC to DIV

The DIV’s final divisor value can be right-shifted by 8 when it is updated by the CORDIC result register.

 DIVCON.DVSSRC Number of bits the divisor is shifted right before the division

 DIV.QSDIR = 0 Left-shift

4.4 Handling Busy Flags during Result Chaining

When the DIV result is chained to the CORDIC’s CORDX, if CON.ST_MODE = 0 the start of the DIV calculation

sets the DIV’s busy flag and also sets the CORDIC’s busy flag.

After completion of the DIV operation, the result is written into the DIV’s register and CORDX. The DIV’s busy

flag is not immediately cleared. Instead, both the DIV and CORDIC busy flags are cleared after the CORDIC

calculation is completed.

Figure 5 Busy flags during Result Chaining

The rule described above is applied in the other direction when the CORDIC result is chained to DIV’s DVS

register and DIVCON.STMODE = 0.

4.5 Result Chaining Example

The following example illustrates the use of result chaining by updating the input data of DIV’s divisor using

the CORDIC’s CORRX output result.

Math Coprocessor (MATH)

AP32307

Result Chaining

Application Note 19 V1.0, 2015-07

/* DVSRC = 011b, DVS result will be updated when CORRX has new result */

MATH->GLBCON = XMC_MATH_DIV_DVSRC_CORRX_IS_SOURCE;

/* STMODE = 0, Auto start when DVS is written */

/* DVSSRC = 8, DVS value right shifted by 8 */

MATH->DIVCON = (0<<MATH_DIVCON_STMODE_Pos)+(8<<MATH_DIVCON_DVSSRC_Pos);

/* Preload the dividend value first */

MATH->DVD = 0x12345678;

/* MODE = 01b, Circular Mode */

/* ROTVEC = 0, Vectoring Mode */

/* ST_MODE = 0, Auto start when CORDX is written */

MATH->CON = XMC_MATH_CORDIC_OPERATING_MODE_CIRCULAR +

XMC_MATH_CORDIC_ROTVEC_MODE_VECTORING + (0<<MATH_CON_ST_MODE_Pos);

/* Load the initial angle value */

MATH->CORDZ = 0;

/* Load the magnitude of Vector2 */

MATH->CORDY = (0x123456<<8);

/* Load the magnitude of Vector1 */

MATH->CORDX = (0x112233<<8);

// CORDIC will automatically start

// …………………………………………………………………………………..

// CORDIC result to DVS will start DIV

while(XMC_MATH_DIV_IsBusy()); // wait until DIV is ready (Not busy)

Result = MATH->QUOT; // Read out the result

Math Coprocessor (MATH)

AP32307

Appendix

Application Note 20 V1.0, 2015-07

5 Appendix

Figure 6 CORDIC Coprocessor Operating Modes and Corresponding Result Data

Math Coprocessor (MATH)

AP32307

Revision History

Application Note 21 V1.0, 2015-07

6 Revision History

Current Version is V1.0, 2015-07

Page or Reference Description of change

V1.0, 2015-07

 Initial Version

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2015 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about any

aspect of this document?

Email: erratum@infineon.com

Document reference

Legal Disclaimer
THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.

Information
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.

www.infineon.com

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™,
EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, IsoPACK™, i-
Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM
Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-
iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of
Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of
Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2014-07-17

Edition 2015-07

AP32307

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/
www.infineon.com

	1 MATH Coprocessor Overview
	1.1 Features
	1.2 MATH Library

	2 Division Operation
	2.1 Configuration for Signed or Unsigned division operation
	2.2 Configuration for starting the division operation
	2.3 Poll for the result to be ready
	2.4 Generate an Interrupt when result is ready
	2.5 Divide by Zero Error
	2.6 Using XMC Lib for DIV operations
	2.7 DIVS Benchmarking Results

	3 CORDIC
	3.1 Configuration for CORDIC operation
	3.2 Configuration for starting CORDIC operation
	3.3 Poll for the result to be ready
	3.4 Generate an Interrupt on completion
	3.5 Using XMC Lib for CORDIC calculation
	3.5.1 Calculating exp(z)

	3.6 CORDIC Examples
	3.6.1 Calculating Vector Magnitude and Angle
	3.6.2 Calculating ln(x)
	3.6.3 Calculating sqrt(x)

	3.7 CORDIC Benchmarking Results

	4 Result Chaining
	4.1 Data Compatibility between 32-bit DIV and 24-bit CORDIC
	4.2 Transfer of data from DIV to CORDIC
	4.3 Transfer of data from CORDIC to DIV
	4.4 Handling Busy Flags during Result Chaining
	4.5 Result Chaining Example

	5 Appendix
	6 Revision History

