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1 Preface 
This application note describes a basic thread-support implementation on the TriCore architecture [1]. The 
document is aimed at developers who write or design real-time applications on the TriCore and are considering 
splitting the application into multiple threads of execution. This document looks specifically at those features of 
the TriCore architecture that make it such an attractive platform for real-time embedded systems, focusing par-
ticularly on fast context switching and the use of software-posted interrupt requests for low-overhead interfacing 
to the task-dispatch function of the kernel. 

This guide assumes that readers have access to the TriCore Architecture Manual [1], and have at least some 
general knowledge of the TriCore instruction set and architectural features. Those chapters of the Architecture 
Manual covering Core Registers, Context Management and function-calling are particularly pertinent to potential 
readers of this document. 

See References on Page 25 for more information on the TriCore Architecture manual and other relevant docu-
mentation. 

It is assumed that most readers will be generally familiar with the features and functions of Real-Time Operating 
Systems (RTOSs). However, between this document and those listed in the references, there is enough infor-
mation to enable embedded systems programmers with no prior RTOS experience to understand and add 
custom RTOS functionality to embedded applications that require it. 

2 Introduction 
This chapter explores specific real-time issues for the TriCore architecture and explains how particular features 
of the architecture can be used to expedite task management and scheduling. 

Processing is performed either at the interrupt service level, with context switching driven entirely by the priority-
interrupt mechanisms of the hardware, or at a non-interrupt level by software-managed tasks. The interrupt 
system still operates of course, but in addition to the context switching involved in taking and returning from an 
interrupt, there is software-managed context switching between application tasks, driven by the task manage-
ment of a real-time kernel. 

Typical deeply embedded applications on the TriCore are driven mainly by interrupts. The TriCore architecture 
supports these systems with multiple features, resulting in extremely low interrupt latency. 
• Hardware-supported context switch. The upper context, sixteen 32bit registers (512bits) are stored in 2 CPU 

cycles. While application programmers are limited to 64-bit load/store operations1, the core stores 128 bits in 
one cycle. During a context load/store, a shadow bank inside the TriCore is used to temporarily store 
256 bits, so that although the complete store operation will take 4 cycles, the core is ready to execute the 
interrupt routine within 2 cycles. 

• 4-stage pipeline. The TriCore has a 4-stage, fetch/decode/execute/writeback pipeline. When an interrupt is 
taken, the first instruction is executed after just 3 cycles. 

• The Interrupt Control Unit (ICU) is running independently from the core. The core execution is broken only 
when an interrupt is pending which has a higher priority than the current priority of the core. The ICU can 
handle up to 255 priorities. By default, interrupt routines should be short and non-interruptable. It’s up to the 
application programmer to enable higher-priority interrupts during interrupt execution. Interrupts can be 
grouped. 

• TriCore derivatives implement a second core on the same silicon. The Peripheral Control Processor (PCP) 
is directly connected to the peripheral bus, has its own ICU, and can handle interrupts independently from 
the TriCore or can preprocess values before sending them to the TriCore. This offloads simple tasks from 
the main CPU. 

 
The TriCore interrupt system is very efficient, fast and small. Systems that are solely built on interrupts without 
using any software-managed tasks, are referred to as bare hardware systems. However, bare hardware sys-
tems are limited in the complexity of the applications they can handle, as the different Interrupt Service Routines 
(ISRs) have little scope for interaction. They may share global variables for communicating status, but are con-

                                                      
1 128-bit load/store will be available on TC1.6 
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strained to a strict priority-based, last-in, first-out scheduling sequence. An ISR can not be allowed to suspend 
its execution to wait for a message from another ISR because it would be implicitly blocking execution of any 
lower-priority ISR that it had interrupted. In real-time kernel based systems, the routines that service hardware 
interrupts are typically small and fast. Their main function is to capture or send data, and to notify the task-
scheduling kernel of any further processing required. The bulk of application processing is carried out by tasks 
running at the “background”’ level of the processor; i.e. its normal state when it is not executing an ISR. There 
are two general types of task scheduling in real-time kernel based systems: 
• Non-preemptive scheduling, 
• Preemptive systems scheduling. 

2.1 Non-Preemptive Scheduling 

In non-preemptive scheduling, the kernel never preempts a running task in order to switch to another task. 
Some explicit action is required by the running task for it to give up control of the CPU. For example, the task 
may request a resource that is not currently available, with an implied request to suspend its execution until the 
resource becomes available. The kernel would then remove the task from the ready queue, and look for another 
task to which to pass control of the CPU. 

Non-preemptive scheduling is sometimes referred to as co-operative multitasking, because tasks co-operate 
with one another to pass control of the CPU. A running task can be interrupted, but the interrupt will not cause it 
to lose control of the CPU to another task. An ISR will always return control to the task or service routine that 
was running when the associated interrupt was taken. That makes a non-preemptive task management kernel 
simpler and easier to write than a preemptive kernel. More importantly it also simplifies certain aspects of the 
application tasks. There is much less need to guard access to shared data through the use of semaphores, 
because each task executes for as long as it needs, without concern for preemption. For the same reason, 
tasks may call non-reentrant functions that use statically-allocated, temporary variables. 

A further potential advantage of non-preemptive scheduling is that interrupt latency can be lower than with pre-
emptive scheduling. Non-preemption largely eliminates the need for interrupt lockouts within critical code sec-
tions. In addition, the de-coupling of interrupts from task scheduling means that interrupt servicing does not go 
through the kernel and ISRs avoid a level of overhead that they would otherwise incur. The overhead of en-
queuing a task request and exiting through the kernel to get the task dispatched is avoided. 

On the other hand however, while the ISR is executing, lower-priority interrupts are implicitly disabled. The ISR 
is subject to the same non-blocking considerations and consequent limitations on inter-module messaging that it 
would have in a bare hardware system. Therefore in practice most ISRs remain limited to data capture and 
posting of event notifications. However, in a non-preemptive system there is no guarantee as to when a running 
task will get around to checking for the notification, or make a call that will allow the kernel to do so. That means 
that if the overall system of co-operating tasks and ISRs is not carefully designed, “non-preemptive” can easily 
become “non-responsive.” For that reason non-preemptive kernels are rarely used in hard real-time systems. 

2.2 Preemptive Scheduling 

Virtually all commercial real-time operating systems on the market implement preemptive scheduling. That 
means that an interrupt can cause a waiting task to become ready to execute, and if the new task has higher 
priority than the task running when the interrupt was taken, the new task will be dispatched when the ISR exits, 
preempting the previously running task. 

The simplest model for preemptive scheduling is: 
1. Application task is running at non-interrupt (background) level. All interrupts are enabled. 
2. Interrupt is taken: ISR calls real-time kernel function (event notification) that results in a change to the task-

ready queue. 
3. Real-time kernel updates the appropriate queues, but takes no further action before returning to the ISR. 
4. ISR completes but does not issue a direct return from interrupt. Instead, it branches to a kernel entry point or 

ISR termination. 
5. The kernel, still operating at the interrupt level from which it was invoked, examines the task-ready queue. If 

a task switch is called for, it modifies the return context for the interrupt, such that a switch is made to the 
new context. The kernel then executes the return from interrupt. 
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This model assumes that ISRs execute to completion, without being interrupted in turn by higher-priority events. 
In practice, keeping interrupts disabled for the duration of an ISR may be unacceptable in terms of impact on 
interrupt latency. So the model must deal with two complications: 
• Determining when to invoke the task-dispatch function. It must be invoked just prior to returning from inter-

rupt to user level, but not when returning from one interrupt level to another. 
• Guaranteeing that when the task-dispatch function has selected the highest priority ready task, it can com-

plete the dispatch of that task without another interrupt coming in and invalidating its selection. 
Besides implementing the dispatch operation itself (i.e. a task context switch), handling these two complications 
is the most crucial function of any real-time executive or operating system. The code for handling them is liter-
ally the “kernel” around which the rest of the system is built. 
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3 Task Management on TriCore 
This chapter explores specific RTOS porting issues for the TriCore architecture and explains how particular 
features of the architecture can be used to expedite task management and scheduling. 

3.1 Task Dispatch Control 

For many architectures, determining when to invoke the task-dispatch logic is non-trivial. From an ISR there is 
no immediate way of knowing whether the current return context is for a software-managed task, or for another 
ISR that was executing when the current interrupt was taken. 

One way to deal with this is to require every ISR to “register” itself with the kernel immediately upon entry, while 
interrupts are disabled. Registration may consist of as little as atomically incrementing an interrupt-nesting 
counter. The ISR is also required to exit through the kernel, giving the kernel an opportunity to test and decre-
ment the nesting counter. When the counter value prior to decrementing is 1, the kernel knows that it is about to 
return to the user level. At that point it branches to the dispatcher to check whether it should return to the inter-
rupted task, or switch to a new task. 

The TriCore architecture provides a more direct method of determining the level of the current return context. 
The user level, at which software-managed tasks are executed, is priority level 0. At all times the CPU keeps 
track of both the current CPU Interrupt Priority Number (CIPN), and the CIPN of the return context. Both values 
can be read by software, so the test for being at the first interrupt level is simply to check for a return context 
CIPN of zero. This is the PCPN field (Previous CPU Priority Number) of the Previous Context Information 
(PCXI) register. 

A limitation of this approach is that it still requires ISRs to exit through the kernel, in order to perform the check1. 
However, an alternative approach is available that avoids even that modest overhead. 

Tasks and ISRs with an I/O privilege level of 2 (Supervisor mode) can post interrupt requests by writing to the 
control registers of interrupt nodes. If interrupt priority level 1 is left unused by any hardware device, and there is 
an interrupt node available that is not used for any hardware interrupt, then entry # 1 in the interrupt vector can 
be used to invoke the task-dispatch function. If an ISR makes a kernel call that results in a change to the task-
ready queue, then the kernel will post an interrupt request at priority level 1. The ISR for that IPN will be the 
task-dispatch function. Since priority level 1 is below any hardware interrupt priority, but above the level for 
software-managed tasks, that interrupt will be taken after all hardware interrupts have been serviced, but before 
returning to the original interrupted task. 

Using a software-posted interrupt to access the task dispatcher might initially seem to create unnecessary con-
text-switching overhead. However, the TriCore’s interrupt system is optimized to avoid unnecessary context 
switching. If there is a pending interrupt at a level below the current CIPN, but above the CIPN of the return 
context, then the hardware executes a return from the current interrupt level as a branch to the ISR for the 
pending interrupt. The return from the current ISR is folded with the taking of the pending interrupt, bypassing 
the restore and immediate re-save of the return context. 

3.2 Task Dispatching 

An issue that must be addressed by the task dispatcher is to ensure that a dispatch request cannot “disappear” 
between the time the highest-priority ready task is identified and the time the dispatch is completed; i.e. before 
the return from interrupt to the dispatched task is executed by the dispatcher. The scenario for a lost request is: 
1. An interrupt is taken and results in a change in the task-ready queue. 
2. The task dispatcher is entered and the highest priority ready task is identified. 
3. After the task is identified, but before it is actually dispatched, another interrupt is taken. That interrupt 

results in further change to the task-ready queue, adding a task whose priority is higher than the task that 
was about to be dispatched. 

                                                      
1 The ISR could perform the check in-line, but it would have to know where to go depending on the outcome of the check. It 

is cleaner and as efficient for it to branch to an exit function in the kernel. 
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4. The second ISR, determining that it interrupted another ISR rather than a user routine, returns to the inter-
rupted ISR. It does not re-enter the task dispatcher, but assumes (incorrectly) that the dispatcher will be 
entered after the ISR to which it is returning completes. 

5. On resumption following the second interrupt, the task dispatcher completes the dispatch of the task it had 
previously found without noticing that a new, higher-priority task has been enabled. 

A simple way to avoid this problem is for the task dispatcher to disable interrupts before locating and dispatch-
ing the highest-priority task on the ready queue. Interrupts remain disabled until the task dispatch is completed. 
That is in fact how most RTOS implementations do address the problem. Often the time required to find and 
dispatch the highest-priority task on the ready queue is the longest period during which interrupts are disabled, 
and it determines the worst-case interrupt latency for the RTOS. 

A popular way to implement the task-ready queue is with a one or two-level bit vector. If a system has 32 or 
fewer software-managed tasks, each one can be assigned a unique bit in a single-word bit vector. The bits are 
assigned according to the priority order of the tasks. The ready queue is a single word in memory. A task is 
marked as ready to execute by setting its bit in the ready queue. 

Finding the highest-priority task ready to execute is a matter of identifying the leftmost “1” bit in the ready queue. 
On the TriCore this can be done in one cycle, using the CLZ (Count Leading Zeros) instruction. 

It is common practice for the kernel routines that set entries in the task-ready queue to check the priority of the 
entry being set against that of the currently running task. This allows them to determine if a context switch will 
be needed. If a switch is not required then there is no reason to go to the task dispatcher. Therefore when the 
dispatcher is entered, it inherently knows that it will be performing a context switch. One of the first things it will 
do for a TriCore implementation is to save the current value of the PCXI register, containing a pointer to the 
current task’s saved context. It saves it in an array of PCXI values indexed by the current task’s priority/ID num-
ber. This can be thought of as a part of the Task Control Block (TCB) of the current task, where the TCB data 
structure is distributed over multiple arrays indexed in parallel. After saving the current context pointer it pro-
ceeds to examine the task-ready queue.  

After the dispatcher disables interrupts, it uses the CLZ instruction to find the index number of the highest-prior-
ity ready task. If there are no entries in the ready queue the value returned by CLZ will be 32, which is the index 
for the always-enabled system idle task. It stores that index in a global variable for reference by other kernel 
routines, then dispatches the task by indexing into the array of saved PCXI values, moving that value into the 
PCXI register, issuing an RSLCX instruction to restore the new task’s lower context and executing a Return 
From Exception (RFE) to complete the dispatch of the new task. The restoration of the upper context of the 
newly dispatched task by the RFE instruction includes loading the task’s saved Program Status Word (PSW), 
which re-enables interrupts. The total length of the critical dispatch sequence ( Listing 1), where interrupts are 
disabled, is then just nine instructions (including the DISABLE instruction itself): 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 

 
disable                    ; START CRITICAL SECTION 
ld.w d0,[a0]%offset(OSReadyQ)      ; Task Ready Queue (32 entries) 
clz d0,d0                  ; Index of highest priority ready task (32 if none)
st.w [a0]%offset(OSCurrentTask),d0 
addsc.a a15,a8,d0,2        ; Address of word containing context pointer 
ld.w d0,[a15]              ; Context pointer for this task 
mtcr CR_INDEX_PCXI,d0      ; Move context pointer to core register PCXI 
rlcx                       ; Restore lower context 
rfe                        ; Complete the dispatch operation 
 

Listing 1 Dispatch sequence  

 

Note:      If a software-posted interrupt is used to access the task dispatcher, it is possible to avoid disabling 
interrupts in the dispatcher altogether. If the sequence shown above is interrupted, and as a result of the 
interrupt a higher-priority task becomes ready to execute, the final RFE will not cause the initial task to be 
dispatched. The CIPN for its return context will be zero, while a software-posted interrupt will now be 
pending at priority level 1. The RFE instruction will effectively operate as a branch to the ISR for priority 
level 1, which is the task dispatcher itself. This second pass through the dispatcher will pick up the newly 
readied task and dispatch it correctly. 
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4 Threads 
POSIX Threads, or Pthreads, is a POSIX standard for threads [4]. The standard defines an API for creating and 
manipulating threads. Pthreads are most commonly used on Unix-like POSIX systems. Pthreads defines a set 
of C programming language types, functions and constants. It is implemented with a pthread.h header and a 
thread library. Programmers can use the library to create, manipulate and manage threads, as well as synchro-
nize between threads using mutexes and condition variables. This application note implements the most impor-
tant functions of the pthread library for deeply embedded systems. Functions that are not portable because 
either the parameters are different from the standard or the function does not exist in the standard, are marked 
with the suffix _np. 

4.1 Getting Started 

 Listing 2 shows a first pthread example running two threads concurrently. Two thread-control blocks (th1, th2) 
are defined in Lines 2-3 using the macro PTHREAD_CONTROL_BLOCK. The threads are set up with priority 
level 1, a round-robin scheduling policy SCHED_RR and the default stack size. The main function (Lines 23-31) 
initializes the PLL, creates the threads (Lines 26-27), initializes the pthread scheduler (Line 29), and starts the 
threads (Line 30). The threads are created calling pthread_create_np with the thread control block, the thread 
function, and an argument that is passed to the thread function. The thread functions thread1 (Lines 5-12), 
thread2 (Lines 14-21) once started run forever. The endless loop contains a busy waiting delay_ms function. 
thread1 is delayed by 100 ms, thread2 by 200 ms. Each thread function in this example increments a local 
counter variable. These variables are allocated on the thread local stack. With the busy waiting function, the 
thread1 counter should increment twice as fast as the thread2 counter. The counter variable is printed to the 
simulated I/O terminal. The counter values can be recognized on the stack with the debugger watch view 
( Figure 1). 

 

 
 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

 
Example 1 
 
// Define thread control block: name, priority, policy, stack size 
PTHREAD_CONTROL_BLOCK(th1,1,SCHED_RR,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th2,1,SCHED_RR,PTHREAD_DEFAULT_STACK_SIZE) 
 
void thread1(void* arg) { 
    uint32_t volatile counter = 0; 
    for (;;) { 
        counter++; 
        printf("Thread %d counter = %d\n",(int)arg,counter); 
        delay_ms(100); 
    } 
} 
 
void thread2(void* arg) { 
    uint32_t volatile counter = 0; 
    for (;;) { 
        counter++; 
        printf("Thread %d counter = %d\n",(int)arg,counter); 
        delay_ms(200); 
    } 
} 
 
void main(void) { 
    pll_init(); 
 
    pthread_create_np(th1, NULL, thread1, (void*)1); 
    pthread_create_np(th2, NULL, thread2, (void*)2); 
 
    pthread_schedrr_init_np(); 
    pthread_start_np(); 
} 
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Output 
 
Thread 1 counter = 1 
Thread 2 counter = 1 
Thread 1 counter = 2 
Thread 2 counter = 2 
Thread 1 counter = 3 
Thread 1 counter = 4 
Thread 2 counter = 3 
Thread 1 counter = 5 
Thread 1 counter = 6 
Thread 1 counter = 7 
Thread 2 counter = 4 
Thread 1 counter = 8 
Thread 2 counter = 5 
Thread 1 counter = 9 
Thread 1 counter = 10… 
 

Listing 2 A first pthread example (Example: pthread_static_example_1) 

 
 

 
Figure 1 Snapshot of the debugger watch view 

 

4.2 Creating Threads 

Each thread is associated with a thread-control block. The header file pthread.h defines the following type 
 

 
1 
2 
3 
4 
5 
6 
7 
8 
 

 
typedef struct pthread_s { 
    struct pthread_s *next; //!< next thread pointer 
    struct pthread_s *prev; //!< previous thread pointer 
    uint32_t lcx;           //!< lower context pointer 
    uint32_t priority;      //!< thread priority. 0 to PTHREAD_PRIO_MAX 
    uint32_t policy;        //!< policy is one of sched_policy_e 
    uint32_t *arg;          //!< argument passed at thread start 
    uint32_t stack[1];      //!< stack[1] is only a dummy 
}*pthread_t; 
 

Listing 3 Thread-control block pthread_t type definition. 

The blocks are organized as a double linked list. The block holds a pointer to the current lower context (Line 3), 
the threads priority (Line 4) and policy (Line 5). The priority is number ranged from 0 to PTHREAD_PRIO_MAX. 
When multiple threads are runnable, the scheduler determines the thread with the highest priority. The library 
supports first-in-first-out (SCHED_FIFO) and round-robin (SCHED_RR) policy. The last element of the 
pthread_s structure is the stack. The type definition only defines a dummy value. The actual definition of a 
thread-control block uses more memory. 

All threads are defined as static, i.e. for each thread function there must be a thread-control block defined. The 
macro PTHREAD_CONTROL_BLOCK is used to define a TCB. It defines the name, priority, policy, and stack 
size. 

Example: 
PTHREAD_CONTROL_BLOCK(th1,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
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The thread-control block named th1 is defined with thread priority 2, SCHED_FIFO policy, and a default stack 
size. 

This thread-control block is passed to the pthread_create_np() function, where the POSIX version dynamically 
creates the structure, i.e. allocates memory on the heap. The pthread_create_np() function reserves two context 
areas ( Listing 4, Line 11-13), from a block allocated in cstart for the thread and sets up the PSW, the stack 
pointer register A10 and Program Counter PC. Finally it puts the threads control block in a linked list. The library 
organizes the thread-control blocks in an array of linked lists. 

pthread_t pthread_runnable_threads[PTHREAD_PRIO_MAX]; 

If the array element is not empty but holds one thread-control block a corresponding bit in the 32-bit 
pthread_runnable variable is set. Therefore the scheduler can quickly find the thread with the highest priority 
using the CLZ instruction. 

 

 
1 
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4 
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20 
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int pthread_create_np(pthread_t thread, const pthread_attr_t *attr, 
                      void(*start_routine)(void *), void *arg) 
{ 
    const pthread_attr_t default_attr= PTHREAD_DEFAULT_ATTR; 
    uint32_t fcx; 
    context_t *cx; 
     
    if (attr == NULL) 
        attr = &default_attr; 
 
    fcx = __mfcr(FCX);          // At start-up the context is a linear array  
    thread->lcx = fcx - 1;      // so that a decrement of 2 reserves an 
    __mtcr(FCX, fcx - 2);         // upper and lower context. 
 
    cx = cx_to_addr(fcx);       // Convert context pointer to address 
    cx->u.psw  = 0 << 12        // Protection Register Set PRS=0 
               | attr->mode << 10                // I/O Privilege 
               | 1L << 7        // Call depth counting is enabled CDE=1 
               | attr->call_depth_overflow;      // Call Depth Overflow 
    cx->u.a10  = thread->stack + *thread->stack; // stack grow down 
    cx->u.a11  = 0;             // New task has no return address  
    cx->u.pcxi = 0;             // No previous context  
    cx--;                       // Decrement to get the lower context address 
    cx->l.pcxi = 0L << 24       // Previous CPU Priority Number PCPN=0 
               | 1L << 23       // Previous Interrupt Enable PIE=1 
               | 1L << 22       // Upper Context Tag. 
               | fcx;           // Previous Context Pointer 
    cx->l.pc   = start_routine; // Init new task start address 
    cx->l.a4   = arg;           // Argument when thread started 
    thread->arg = arg;          // Container that saves the argument 

    uint32_t i = thread->priority; 
    list_append(&pthread_runnable_threads[i], thread, thread, 
                pthread_runnable_threads[i]); 
    __putbit(1,(int*)&pthread_runnable,i); // mark current thread as runnable 
    return 0; 
} 

Listing 4 pthread_create_np function. 

The context save area set-up in the LDRAM after the first 2 threads were created is shown in  Figure 2. The 
thread occupies a lower and upper context. The lower context PCXI is linked to the upper context. The contexts 
program counter variable PC is initialized with the thread start address. The contexts A4 variable holds the 
argument which is passed to the thread program when it is called the first time. The upper context block holds 
the pointer to the upper limit of the stack. On the TriCore the stack grows downward. The contexts A11, the 
return address is initialized to NULL, because the threads in this library run forever, i.e. never return.  
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Figure 2 Context set-up after first 2 threads were created. 
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4.3 Starting Threads 

The function pthread_create_np() does not start the thread. This is done with the function pthread_start_np(). In 
 Listing 4, the threads are started after the system timer initialization. An initialization of the system timer by 
pthread_schedrr_init_np() is required because of the round-robin scheduling policy in the example. The function 
pthread_create_np() sets the previous context (Line 22) to the thread with the highest priority ( Listing 5 Line 10) 
before restoring the lower context (Line 23) and the upper context by calling Return From Event (RFE). RFE 
also enables the interrupt system, i.e. the system-timer interrupt used by the round-robin scheduler. 

The service-request node is only enabled when there is more than 1 thread at the current running priority and 
the current thread has a round-robin scheduling policy (Lines 14-17). This avoids the overhead of interrupting 
the current thread by the system timer when there is no other thread. The list-handling functions (see 
list_append, list_delete_first in pthread.c) take care of setting the next member to NULL is there is only one list 
element.  
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inline void pthread_start_np(void)  
{ 
    extern uint32_t pthread_runnable; 
    extern pthread_t pthread_running; 
    extern pthread_t, pthread_runnable_threads[PTHREAD_PRIO_MAX]; 
 
    pthread_t thread; 
 
    // get ready thread with highest priority ready 
    thread = pthread_runnable_threads[31 - clz(pthread_runnable)]; 
 
    // check if timer must be enabled if thread policy is SCHED_RR 
    // and there is another thread with the same priority 
    if (thread->next != NULL && thread->policy == SCHED_RR)  
        STM_SRC0.B.SRE = 1; 
    else 
        STM_SRC0.B.SRE = 0; 
     
    PTHREAD_SWAP_HANDLER(thread,pthread_running); // callback hook (optional) 
 
    pthread_running = thread; 
    __dsync();                 // Required before mtcr 
    __mtcr(PCXI,thread->lcx);  // Set previous context to start thread  
    __rslcx();                 // Restore the lower context 
    __asm(" mov d2,#0"); 
    __asm(" rfe");             // Return and restore upper context and enable 
} 
 

Listing 5 pthread_start_np function 

 
 
 
 
 
 
 
 
 
 

4.4 Scheduling Threads 

The pthread timer in the example is setup to generate an interrupt every increment of STM_TIM4. With the reset 
value the STM module runs at ¼ of the CPU frequency, i.e. 45 MHz when the TC1797 [3] runs at a maximum 
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speed of 180 MHz. The interrupt is generated every 728 µs. The interrupt uses the service-request node 0 with 
priority SCHEDRR_INT (Line 6). 
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inline void pthread_schedrr_init_np(void)  
{ 
    STM_CMP0.U = 1;           // load compare register 0 with constant 1 
    STM_CMCON.B.MSIZE0 = 0;   // CMP0[0] used for compare operation 
    STM_CMCON.B.MSTART0 = 16; // STM[16] is the lowest bit number (STM_TIM4) 
                              // 2^(16-1)/45MHz = 728us 
    STM_ICR.B.CMP0EN = 1;     // Interrupt on compare match with CMP0 enabled 
    STM_ICR.B.CMP0OS = 0;     // Interrupt output STMIR0 selected 
    STM_SRC0.U = 0x1000 | SCHEDRR_INT; // set and enable service request   
} 
 

Listing 6 pthread_schedrr_init_np function 

The implementation of the interrupt handler is shown in  Listing 7. The interrupt handler is directly placed in the 
interrupt vector table with the __interrupt_fast() qualifier. Every time the handler is called the next thread in the 
linked list is made the running thread (Line 5). If this thread does not have a round-robin scheduling policy the 
system timer service-request node will be disabled (Lines 8-11). 
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void stm_src0 (void) { 
    pthread_t thread; 
 
    pthread_running->lcx = __mfcr(PCXI); 
    thread = pthread_running->next; 
    pthread_runnable_threads[thread->priority] = thread; 
 
    if (thread->policy == SCHED_RR)  
        STM_SRC0.B.SRE = 1; 
    else 
        STM_SRC0.B.SRE = 0; 
 
    PTHREAD_SWAP_HANDLER(thread,pthread_running); // callback hook (optional) 
 
    pthread_running = thread; 
    __dsync(); // required before PCXI manipulation 
    __mtcr(PCXI,thread->lcx);    // modify previous context 
    __asm("ji a11"); 
} 
 
void __interrupt_fast(2) stm_src0_fast(void) { // store upper context 
    STM_ISRR.B.CMP0IRR = 1;      // enable interrupts again 
    __asm(" svlcx        \n"     // store lower context 
          " jla stm_src0 \n"     // jump and link absolute to stm_src0  
          " rslcx          ");   // restore lower context 
                                 // RFE restores upper context 
} 
 

Listing 7 stm_src0 interrupt function 

4.5 Dispatching Threads 

The thread dispatcher is invoked by a system call SYSCALL which causes a system trap ( Listing 8). The trap 
identification number TIN defines two cases: DISPATCH_WAIT (Line 38) or DISPATCH_SIGNAL (Line 43). 
Either the current running thread is swapped out or one or more blocked threads are appended to the runnable 
thread list. In both cases the function pthread_start_np() identifies the thread with the highest priority number in 
the runnable thread list (Line 9) and swaps in this thread. 
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//! Start threads 
inline void pthread_start_np(void) { 
    extern uint32_t pthread_runnable; 
    extern pthread_t pthread_running; 
    extern pthread_t, pthread_runnable_threads[PTHREAD_PRIO_MAX]; 
    pthread_t thread; 
 
    //  get ready thread with highest priority ready 
    thread = pthread_runnable_threads[31-clz(pthread_runnable)]; 
 
    // check if timer must be enabled if thread policy is SCHED_RR 
    // and there is another thread with the same priority 
    if (thread->next != NULL && thread->policy == SCHED_RR) 
        STM_SRC0.B.SRE = 1; // STOREBIT(STM_SRC0, 12, 1); 
    else 
        STM_SRC0.B.SRE = 0; // STOREBIT(STM_SRC0, 12, 0); 
 
    pthread_running = thread; 
    __dsync(); 
    __mtcr(PCXI, thread->lcx); 
    __rslcx(); 
    __asm(" mov d2,#0"); 
    __asm(" rfe"); 
} 
 
static void trapsystem(pthread_t *blocked_threads_ptr, pthread_t last_thread) 
{ 
    int tin, i; 
    pthread_t thread, tmp; 
 
    __asm(" mov %0,d15 \n" 
          " svlcx        " 
          :"=d"(tin)); // put d15 in C variable tin 
 
    pthread_running->lcx = __mfcr(PCXI); 
    i = pthread_running->priority; 
    switch (tin) { 
    case DISPATCH_WAIT: // _swap_out _pthread_running 
      list_delete_first(&pthread_runnable_threads[i]); 
      list_append(blocked_threads_ptr,pthread_running,pthread_running,NULL); 
      __putbit(neza(pthread_runnable_threads[i]),(int*)&pthread_runnable,i); 
        break; 
    case DISPATCH_SIGNAL: // append blocked threads 
      tmp = NULL; 
      assert(blocked_threads_ptr); 
      thread = *blocked_threads_ptr; 
      while (thread != NULL) { 
          tmp = thread->next; 
          i = thread->priority; 
          list_append(&pthread_runnable_threads[i], thread, thread, 
                  pthread_runnable_threads[i]); 
          __putbit(1,(int*)&pthread_runnable,i); 
          if (thread == last_thread) 
              break; 
          thread = tmp; 
      } 
      *blocked_threads_ptr = tmp; 
      break; 
    default: 
      break; 
    } 
    pthread_start_np(); 
} 
 

Listing 8 thread dispatcher function  trapsystem() 



 AP32152 
Concurrent multi-threaded execution 

 
  Threads 

Application Note 17 V1.0, 2010-03  

4.6 Condition scheduling 

The pthread library implements the pthread_cond_timedwait_np() function which blocks the thread until the 
condition is signaled or until a timeout period elapsed. To use this function, a timer must be initialized by calling 
pthread_cond_timedwait_init_np() ( Listing 9). The pthread_cond_timedwait_np() is a non-portable POSIX imple-
mentation using a relative time parameter. The relative time has to be given in 1 to 65536 ticks of the system 
timer of 728 µs. 
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inline void pthread_cond_timedwait_init_np() { 
    STM_CMCON.B.MSIZE1 = 15;  // 16 bits are used for compare operation 
    STM_CMCON.B.MSTART1 = 16; // STM[16:31] that is compared to CMP1  
                              // Interrupt period 1 to 65535 ticks à 728us 
    STM_ICR.B.CMP1EN = 1;     // Interrupt on compare match with CMP1 enabled 
    STM_ICR.B.CMP1OS = 1;     // Interrupt output STMIR1 selected 
    STM_SRC1.U = TIMEDWAIT_INT ; // set service request control 
} 
 

Listing 9 pthread_schedrr_init_np function 
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5 API Reference 
The library implements a subset of the POSIX pthread standard [4]. Non-portable functions have a _np suffix. 
These functions might have different parameter or different behaviour, or they are not available in the standard, 
In general the implementation does not set the error number. For a complete description of the pthread func-
tions please read the Open Group Base Specifications Issue 6, IEEE Std 1003.1 (see www.opengroup.org). 

Table 1 Compatibility Matrix 
Name Notes 
pthread_create_np ( 

pthread_t thread, 
const pthread_attr_t *attr, 
void(*start_routine)(void *), 
void *arg) 

Non-portable version of pthread_create.  
- Function must be called from main. 
- The function does not start the thread. 
- The parameter thread does not hold the ID upon successful 

completion, but is the thread-control block that must be allocated in 
advance. 

- The thread startroutine never returns. 
pthread_mutex_trylock( 

pthread_mutex_t *mutex) 
- 

pthread_mutex_unlock( 
pthread_mutex_t *mutex) 

- 

pthread_cond_wait( 
pthread_cond_t *cond, 
pthread_mutex_t *mutex) 

- 

pthread_cond_timedwait_np( 
pthread_cond_t *cond, 
pthread_mutex_t *mutex, 
uint16_t reltime) 

Non-portable version of pthread_timewait 
- The time to wait is specified by the reltime parameter as a relative 

system time. 
The maximum number of conditions that can wait is defined by TW_SZ. 

pthread_cond_broadcast( 
pthread_cond_t *cond) 

- 

pthread_cond_signal( 
pthread_cond_t *cond) 

- 

pthread_cond_timedwait_init_np( 
void) 

Non-portable function that is not available in the POSIX standard. The 
timer is required in case of 
- timed wait on condition. 
The initialization of the timer should be done in after thread creation. 

pthread_schedrr_init_np(void) Non-portable function that is not available in the POSIX standard. The 
timer is required in case of 
- round robin scheduling policy. 
The initialization of the timer should be done after thread creation. 

pthread_start_np(void) Non-portable function that is not available in the POSIX standard. This 
function should be called at the end of main and starts the thread exe-
cution. It never returns.  
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6 Synchronizing 
The library implements mutex and conditions variables. To protect a shared resource from a race condition, a 
type of synchronization called mutual exclusion, or mutex for short can be used. Using mutexes a thread turns 
at having exclusive access to data. When one thread has exclusive access to data, other threads cannot simul-
taneously access the same data. The mutex is similar to the principle of the binary semaphore with one signifi-
cant difference: the principle of ownership. Ownership is the simple concept that when a task locks (acquires) a 
mutex, only the same task can unlock (release) it. If a task tries to unlock a mutex it hasn’t locked (thus doesn’t 
own) then an error condition is encountered and, most importantly, the mutex is not unlocked. If the mutual 
exclusion object doesn't have ownership then, it is not a mutex no matter what it is called. 

The concept of ownership enables mutex implementations to address the problems and inherent dangers asso-
ciated with using the semaphores: accidental release, recursive deadlock, task-death deadlock, priority inver-
sion and using a semaphore as a signal. Semaphores are rarely required in embedded systems software. 

Whereas a mutex allows threads to synchronize by controlling their access to data, a condition variable allows 
threads to synchronize on the value of data. The POSIX condition implements a unilateral synchronization. A 
task waits for another task until is signals an event. Bilateral synchronization, often called a rendezvous is rarely 
supported by RTOSs. A condition variable provides a way of naming an event in which threads have a general 
interest. An event can be as simple as a counter’s reaching a particular value or a flag being set or cleared. 
Pthreads conditions are a perfect choice when a thread waits for a resource, i.e. an interrupt to provide new 
data. 

6.1 Mutex variables 
Example: pthread_static_example_2 

This example shows the corruption that can result if no serialization is done and also shows the use of 
pthread_mutex_lock(). It can be called with no parameters to use pthread_mutex_lock() to protect the critical 
section, or called with one or more parameters to show data corruption that occurs without locking. 

The example creates four threads with round-robin scheduling policy with the same thread function. The threads 
increment four global variables i, j, k, l. Without using a mutex, there is a chance that a thread switch will happen 
after loading a global variable. The new thread increments the variable and when the first thread continues exe-
cuting the value that is already loaded to a register is outdated. This results in different values of i, j, k, and l, as 
shown in the first output window. 

The second output window shows the values when the critical section of incrementing the global variables is 
protected using a mutex. 
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Example 2 
 
#pragma align 8 
// define thread name, priority, policy, stack size 
PTHREAD_CONTROL_BLOCK(th1,1,SCHED_RR,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th2,1,SCHED_RR,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th3,1,SCHED_RR,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th4,1,SCHED_RR,PTHREAD_DEFAULT_STACK_SIZE) 
#pragma align restore 
 
pthread_mutex_t    mutex = PTHREAD_MUTEX_INITIALIZER; 
int                i,j,k,l; 
int volatile       uselock=0; 
 
void thread(void* arg) { 
    for (;;) { 
        if (uselock) 
            pthread_mutex_lock(&mutex); 
        ++i; ++j; ++k; ++l; 
        if (uselock) 
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           pthread_mutex_unlock(&mutex); 
    } 
} 
 
void main(void) { 
    pll_init(); 
     
    printf("Create 4 threads with round-robin policy.\n"); 
 
    pthread_create_np(th1, NULL, thread, (void*) 1); 
    pthread_create_np(th2, NULL, thread, (void*) 2); 
    pthread_create_np(th3, NULL, thread, (void*) 2); 
    pthread_create_np(th4, NULL, thread, (void*) 2); 
 
    pthread_init_timer_np(); 
    pthread_start_np(); 
} 
 
Output without using mutex (Variable unlock=0) 
 

 
 
Output with using mutex (Variable unlock=1) 
 

 
 

Listing 10 Synchronizing example using mutex 

6.2 Conditions variables 
Example: pthread_static_example_3 

This example shows how to use a condition variable to wake up a thread. All seven threads are created with 
priority 2, first-in-first-out scheduling policy and the same thread function thread2. These threads are waiting on 
the condition variable conditionMet which is initialized with 0 to become 1. So all threads become blocked by the 
condition until thread th0 with priority 1 and thread function thread1 are running and conditionMet is set to 1. A 
call of pthread_cond_broadcast signals all blocked threads to become runnable. 
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Example 3 
 
// define thread name, priority, policy, stack size 
PTHREAD_CONTROL_BLOCK(th0,1,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th1,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th2,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
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PTHREAD_CONTROL_BLOCK(th3,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th4,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th5,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th6,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th7,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
 
int32_t volatile conditionMet = 0; 
pthread_cond_t cond = PTHREAD_COND_INITIALIZER; 
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; 
 
void thread1(void* arg) { 
    for (;;) { 
        pthread_mutex_lock(&mutex); 
        conditionMet = 1; 
        puts("Wake up all waiters..."); 
        delay_ms(200); 
        pthread_cond_broadcast(&cond); 
        pthread_mutex_unlock(&mutex); 
    } 
} 
 
void thread2(void* arg) { 
    for (;;) { 
        pthread_mutex_lock(&mutex); 
        conditionMet = 0; 
        while (!conditionMet) { 
            printf("Thread %d blocked\n", (int) arg); 
            delay_ms(200); 
            pthread_cond_wait(&cond, &mutex); 
        } 
        pthread_mutex_unlock(&mutex); 
    } 
} 
 
void main(void) { 
    pll_init(); 
 
    pthread_create_np(th0, NULL, thread1, (void*) 0); 
    pthread_create_np(th1, NULL, thread2, (void*) 1); 
    pthread_create_np(th2, NULL, thread2, (void*) 2); 
    pthread_create_np(th3, NULL, thread2, (void*) 3); 
    pthread_create_np(th4, NULL, thread2, (void*) 4); 
    pthread_create_np(th5, NULL, thread2, (void*) 5); 
    pthread_create_np(th6, NULL, thread2, (void*) 6); 
    pthread_create_np(th7, NULL, thread2, (void*) 7); 
 
    pthread_start_np(); 
} 
 
Output 
 
Thread 1 blocked 
Thread 2 blocked 
Thread 3 blocked 
Thread 4 blocked 
Thread 5 blocked 
Thread 6 blocked 
Thread 7 blocked 
Wake up all waiters 
... 
 

Listing 11 Synchronizing example using conditions 
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6.3 Condition variables from interrupt handler 
Example: pthread_static_example_4 

This example shows how to use a condition variable to wake up a thread from an interrupt. Thread th1 and th2 
are waiting for a condition (Line 23) and become blocked. The receive interrupt handler from an ASC interface 
broadcasts the condition (Line 14) and make the threads runnable again.The example also implements a thread 
on the lowest priority which is executed on idle. 
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Example 4 
 
// define thread name, priority, policy, stack size 
PTHREAD_CONTROL_BLOCK(th0,0,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th1,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th2,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
 
pthread_cond_t cond   = PTHREAD_COND_INITIALIZER; 
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; 
 
void __interrupt(5) asc0_rx(void) { 
    puts("Wake up all waiters..."); 
    pthread_cond_broadcast(&cond); 
} 
 
void idle(void* arg) { 
    for (;;) 
        ; 
} 
 
void thread(void* arg) { 
    for (;;) { 
        pthread_mutex_lock(&mutex); 
        printf("Thread %d blocked\n", (int) arg); 
        pthread_cond_wait(&cond, &mutex); 
        printf("Thread %d continued\n", (int) arg); 
        pthread_mutex_unlock(&mutex); 
    } 
} 
 
void main(void) { 
    pll_init(); 
    asc0_init(); 
 
    pthread_create_np(th0, NULL, idle, (void*) 0); 
    pthread_create_np(th1, NULL, thread, (void*) 1); 
    pthread_create_np(th2, NULL, thread, (void*) 2); 
 
    pthread_start_np(); 
} 
 
Output  
 
Thread 1 blocked 
Thread 2 blocked 
Wake up all waiters... 
Thread 1 continued 
Thread 1 blocked 
Thread 2 continued 
Thread 2 blocked 
Wake up all waiters... 
 

Listing 12 Synchronizing example using condition with a wake-up from an interrupt 
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6.4 Condition variables with timeout period 
Example: pthread_static_example_5 

This example shows how to use a condition variable to wake up a thread from an interrupt or after a timeout 
period has elapsed. Thread th1 and th2 are waiting for a condition (Lines 26, 35) and become blocked. The 
receive interrupt handler from an ASC interface broadcasts the conditions (Lines 15-16) and make the threads 
runnable again. Thread th2 is blocked with a timeout period of 100 timer ticks (Line 35). 
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Example 5 
 
// define thread name, priority, policy, stack size 
PTHREAD_CONTROL_BLOCK(th0,0,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th1,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
PTHREAD_CONTROL_BLOCK(th2,2,SCHED_FIFO,PTHREAD_DEFAULT_STACK_SIZE) 
 
pthread_cond_t cond1 = PTHREAD_COND_INITIALIZER; 
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER; 
pthread_cond_t cond2 = PTHREAD_COND_INITIALIZER; 
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER; 
 
void __interrupt(5) asc0_rx(void) { 
    puts("Wake up all waiters..."); 
    pthread_cond_broadcast(&cond1); 
    pthread_cond_broadcast(&cond2); 
} 
 
void idle(void* arg) { 
    for (;;) 
        ; 
} 
 
void thread1(void* arg) { 
    for (;;) { 
        pthread_mutex_lock(&mutex1); 
        printf("Thread %d blocked\n", (int) arg); 
        pthread_cond_wait(&cond1, &mutex1); 
        printf("Thread %d continued\n", (int) arg); 
        pthread_mutex_unlock(&mutex1); 
    } 
} 
void thread2(void* arg) { 
    for (;;) { 
        pthread_mutex_lock(&mutex2); 
        printf("Thread %d blocked\n", (int) arg); 
        pthread_cond_timedwait_np(&cond2, &mutex2, 100); 
        printf("Thread %d continued\n", (int) arg); 
        pthread_mutex_unlock(&mutex2); 
    } 
} 
 
void main(void) { 
    pll_init(); 
    asc0_init(); 
 
    printf("Example 5: Create 3 threads with first-in-first-out policy." 
           "Shows how to block a thread until the condition is signaled or" 
           " until a timeout period elapsed.\n"); 
 
    pthread_create_np(th0, NULL, idle, (void*) 0); 
    pthread_create_np(th1, NULL, thread1, (void*) 1); 
    pthread_create_np(th2, NULL, thread2, (void*) 2); 
 
    pthread_cond_timedwait_init_np(); // timedwait condition requires a timer 
    pthread_start_np(); 
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} 
 
Output  
 
Thread 1 blocked 
Thread 2 blocked 
Thread 2 continued 
Thread 2 blocked 
Wake up all waiters... 
Thread 1 continued 
Thread 1 blocked 
Thread 2 continued 
Thread 2 blocked 
Thread 2 continued 

Listing 13 Synchronizing example using condition with a timeout period 
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7 Tools 
The pthread library is built using Tasking 3.3r1. The example code includes project workspaces for the PLS 
UDE debugger V2.6.11. 

8 Source code 
The source code provided with this application consists of a library project pthread_static and five example pro-
grams that were generally described in the chapter  4 and  6. Documentation is extracted directly from the 
sources using eclox [5]. Open the \html\index.html in each project directory. 
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